|
Papers |
First Author: |
LIAO Hongkai |
Abstract: |
Root-associated microorganisms play an important role in plant nutrition and productivity. However, our understanding of how a plant-microbiome system responds to pre-planting soil management remains limited. Here, continuous labeling with 13CO2 gas combined with stable isotope probing (SIP) was applied to explore bacterial utilization of plant-derived carbon (C) in the tomato rhizosphere as affected by biochar amendment or reductive soil disinfestation (RSD). Our results showed that RSD treatment strongly shaped the soil bacterial community composition, while biochar soil amendment had little impact on the community in the rhizosphere of tomato. We observed that the bacterial community in the RSD treatment, which actively utilized plant-derived C, belonged to various phyla (i.e., Proteobacteria, Cyanobacteria, Verrucomicrobia, and Acidobacteria), while the genus Streptomyces (phylum Actinobacteria) was the main bacterial taxa that actively utilized plant-derived C in the biochar and control treatments. This study provides evidence that biochar application or RSD pre-planting soil management practices induced distinct bacterial utilization of plant-derived C, which may in turn regulate plant productivity in agricultural systems.
|
Contact the author: |
YAO Huaiying |
Page Number: |
815-825 |
Issue: |
2 |
Subject: |
|
Impact Factor: |
|
Authors units: |
|
PubYear: |
JAN 2021 |
Volume: |
105 |
Publication Name: |
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY |
The full text link: |
https://link.springer.com/article/10.1007/s00253-020-11036-6 |
ISSN: |
|
Appendix: |
|
|