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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Optimise the energy transition of coastal 
cities considering the Energy Trilemma. 

• Develop and efficiently solve a bottom- 
up multi-objective non-linear model. 

• Co-optimise long-term energy portfolio 
and short-term hourly dispatch. 

• A most-diverse portfolio with demand- 
side storage requires 3.9% additional 
cost. 

• A least-emission solution requires 26.8% 
additional cost due to limited 
renewables.  
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A B S T R A C T   

The energy transition usually encounters challenges in balancing three competing common goals of economics 
costs, CO2 emissions, and energy resilience (the so-called Energy Trilemma). Such trade-offs are particularly 
conspicuous for coastal cities, which often have more ambitious emission reduction targets and are more likely to 
face threats of extreme weather events such as typhoons. To tackle the Energy Trilemma of the city-level energy 
transition, this study develops a bottom-up multi-objective optimisation framework. The framework enables 
simultaneous optimising the long-term energy portfolio for a 20-year horizon and the short-term hourly dispatch 
strategy considering demand-side flexibility of energy storage. By setting multiple objectives, the trade-offs 
between three representative scenarios are evaluated via Pareto frontiers, i.e., the least-cost, the least- 
emissions, and the diversity-optimal scenarios. The case study in a typical coastal city, i.e., Xiamen, China, in-
dicates that with limited local resources for solar, wind, and other renewable resources, the electricity transition 
would still need to rely on imported power to a large extent. Compared to the least-cost pathway, additional costs 
of 3.9% can help achieve a pathway with maximum energy diversity to enhance resilience, whereas 26.8% 
additional costs are needed to achieve the least-emissions pathway. In addition, the initial 10-year modelling 
results are verified by comparison with real-world actual data to further generate valuable insights into sus-
tainable transition pathways of similar coastal cities.  
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1. Introduction 

The transition towards a low-carbon future is happening worldwide 
[1]. Technological improvement and rapid cost-reductions have led to 
many promising technologies, such as energy storage technologies and 
renewables, as attractive options to achieve a sustainable energy infra-
structure [2]. The electricity sector is taking action by integrating a 
greater amount of renewable energy and shifting to a more distributed 
paradigm [3]. The success of this transition depends on resolving com-
plex challenges that requires the joint efforts of academia, industries, 
and policy-makers from technical, economic, and environmental ini-
tiatives [4]. Energy planning is, therefore, a decision-support process to 
aid the energy policymaking at both national and municipal levels. 

Energy planning, based on mathematical modelling, can produce 
future scenarios that quantifies optimal energy mix for meeting certain 
goals, which can generate insights on when, where, and how govern-
ments should invest in energy infrastructure [5]. Whereas, challenges 
such as the intermittency of renewables require specific energy planning 

models with more flexible temporal, spatial, and technical resolutions 
[6]. 

1.1. Overview of energy system modelling 

Significant efforts have been spent on developing energy planning 
models for different purposes, and one notable effort is The Integrated 
MARKAL-EFOM System (TIMES) modelling framework developed by 
the Energy Technology Systems Analysis Programme (ETSAP) in 
agreement with the International Energy Agency (IEA) [7]. The TIMES 
model offers a technology-rich framework with great generality on 
various spatial scales, e.g., local, national, and multi-regional; and multi- 
period time horizons over a long-term. Generally, TIMES is used to 
analyse the entire energy sector at large scale. To make it more suitable 
for specific applications, many models have been further developed 
based the TIMES framework, including Astudillo et al. who linked the 
life cycle assessment with the TIMES model [8]; Salvucci et al. who 
enhanced the modelling of transport energy sector [9] and other TIMES 

Nomenclature 

Abbreviations 
HHI Herfindahl–Hirschman Index 
MOO multi-objective optimisation 
NLP non-linear programming 
PHES pumped hydro energy storage 
PV photovoltaic 
TCE total carbon emissions 
TDC total discounted cost 
TOPSIS Technique of Order Preference Similarity to the Ideal 

Solution 

Indices 
y years 
s’ typical scenarios for fluctuating renewables 
s typical seasons 
d typical days 
h 24 h 

Sets 
k set of all energy supply technologies 
ka sub-set of combustion-based technologies 
kr sub-set of renewable technologies 
kc sub-set of technologies with zero emission 
kb sub-set of technologies with emissions 

Parameters 
CAPin-st upper bound of PHES installed capacity 
Edem

y,s,s′ ,d,h electricity demand 

Echa
y upper bound of PHES charge rate 

Edisc
y upper bound of PHES discharge rate 

N number of intervals in MOO 
PCAP

k,y unit capital price for supply technologies 
PCAP

in-st,y unit capital price for PHES 
PO&M

k,y unit O&M price for supply technologies 
PO&M

in-st, y unit O&M price for PHES 
Pfuel

ka,y unit fuel price 

Pimpt
y unit price for the import power 

Ramp upper bound of ramping rate 
ratio penetration-level limit 
RMka reserve margin 

SRIy,s,s′ ,h solar radiation index 

UPgen
k,y upper bound of power supply technology annual build rate 

UPin-st upper bound of PHES annual build rate 
WSFy,s,s′ ,h wind speed factor 
ηimpt import power efficiency 
ηcha PHES charge efficiency 
ηdisc PHES discharge efficiency 
λkb,y emission factors for combustion-based technologies 
ε a parameter in MOO 
µ index of interval in MOO 

Continuous Variables 
CAPgen

k,y installed capacity of supply technologies 
CAPgen

wind,y installed capacity of wind power 
CAPgen

solar,y installed capacity of solar power 
CAPgen

ka,y installed capacity of combustion-based technologies 
CAPin-st

y installed capacity of PHES 
Cinv

y investment cost 
CO&M

y operation and maintenance cost 
Cfuel

y,s,s′ ,d,h fuel cost 

Cimpt
y,s,s′ ,d,h import electricity cost 

Egen
kr,y,s,s′ ,d,h electricity generated by renewables 

Egen
solar,y,s,s′ ,d,h electricity generated by solar power 

Egen
wind,y,s,s′ ,d,h electricity generated by wind power 

Egen
ka,y,s,s′ ,d,h electricity generated by combustion-based technologies 

Eimpt
y,s,s′ ,d,h electricity imported 

Echa
y,s,s′ ,d,h electricity charged into PHES 

Edisc
y,s,s′ ,d,h electricity discharged from PHES 

Egen
kb,y,s,s′ ,d,h electricity generated by technologies with emissions 

Ein-st
y,s,s′ ,d,h electricity stored in PHES 

HHIy diversity index at y year 
S2

k,y square term for the share of energy source 
UPgen

k,y newly build power generation capacity 
UPin-st

y newly build PHES capacity 
xd a dummy and free variable  
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applications for China [10], Denmark [11], and Iceland [12]. These 
models tend to simulate the energy system at a large spatial scale for a 
long temporal horizon, while the temporal resolution is relatively 
simplified with less consideration of demand-side flexibility and oper-
ational constraints. 

Another important type of model is the Integrated Assessment Model 
(IAM), which generally includes both physical and social science models 
to analyse climate change, one of the most complicated global envi-
ronmental problem. The IAM is usually based on regional to global 
spatial resolution and with up to 100 years of modelling time horizon. 
Several representative IAM include GCAM [13], DICE/RICE [14], 
IMAGE [15], MESSAGE [16], REMIND [17]. Considering the different 
purpose of the IAM and the present study, the IAM is not detailed here. 

Considering the intermittency and growing penetration of variable 
renewables sources in the power system, more technical constraints such 
as ramp-rate and minimum operation point that are usually in the unit 
commitment (UC) model, need to be represented in the long-term 
planning models. Concerns over the high penetration levels of renew-
ables and flexibility of power systems have spurred several studies to 
integrate demand-side flexibility constraints into long-term planning 
models. Koltsaklis et al. integrated the short-term unit commitment 
constraints into an investment planning model, using an hourly time 
resolution and with each year represented by 12 typical months [18]. 
Pereira et al. developed a generation expansion planning model by using 
mixed-integer non-linear programming with UC constraints to model 
the Portuguese system with variable renewable sources [19]. The typical 
weeks or days approach is also applied to represent the whole year to 
maintain computational tractability. Chen et al. [20] proposed a multi- 
region power generation expansion model with unit commitment con-
straints. Each year is divided into four seasons, and a representative day 
is selected for each season. Emissions are specifically modelled, and the 
model presents a solution to the policy challenge of imbalanced regional 
emission reductions. Poncelet et al. [21] considered the alternative 
sources of flexibility offered by pumped hydro and battery storage 
technologies by proposing a generation expansion model with unit 
commitment constraints at the hourly time resolution. A comprehensive 
review is conducted by Collins et al. [22] categorising the features of 
models at different scales and indicating the potential of developing bi- 
directional soft-linking methods for integration models from different 
scales. All these studies lay a solid foundation for modelling demand- 

side flexibilities and long-term strategic investments. 
Based on the above literature, energy system models can be classified 

into three categories as illustrated in Fig. 1. The temporal, spatial, and 
technical resolutions vary significantly for different categories of models 
with different purposes. The model proposed in the present study is a 
hybrid of the unit commitment model and the long-term planning 
model. 

1.2. Motivation and contribution 

Balancing the Energy Trilemma when planning energy systems re-
mains an open challenge. This issue is particularly prominent for coastal 
cities’ energy systems as they are more susceptible to extreme weather 
events such as typhoons and usually have more ambitious CO2 emission 
reduction targets than many other cities. However, to the best of our 
knowledge, few studies have evaluated the city-level energy transition 
(particularly coastal cities) considering multiple competing objectives at 
a detailed hourly temporal resolution. Thus, a knowledge gap exists in 
understanding the optimal transition pathway for coastal cities that 
considers the possible trade-offs among the Energy Trilemma of cost, 
emissions, and resilience goals. 

To fill this knowledge gap, we develop a bottom-up and multi- 
objective optimisation framework, which is structured with the short- 
term hourly temporal resolution considering demand-side flexibility, 
and able to assess the impacts on long-term investment decisions over 
20-year transition horizon. Notably, we consider the demand-side 
electricity storage and the objective function of technological diversity 
in our model to enhance system resilience. Multiple scenarios consid-
ering various criteria of least cost, least emission, and maximised di-
versity are evaluated. The modelling results are further validated with 
real-world conditions to generate valuable insights from both political 
and methodological perspectives. 

The contribution of this study are as follows.  

(1) From a political perspective, this study highlights the important 
role that municipal policymakers can play in guiding future en-
ergy planning investments towards sustainable energy infra-
structure, and provides timely findings just as several pilot 
projects are being launched in China [23]. As a representative 
coastal city in China, the policy insights generated from Xiamen’s 

Unit commitment model 
minutes to hours time-slice, typical time-horizon length of a y

nodal power flow from micro-grid to utility-grid level

operational optimisation from devices to systems & plants level

Long term planning model
hours to years time-slice, typical time-horizon length of 20+ y

maps of energy flow from municipal to national level

investment and operational optimisation from plants to sector l

Integrated Assessment Model
years to 5-years time-slice, typical time-horizon length of 50+

maps of energy/material multi-flow from regional to global leve

investment and operational optimisation from plants to cross-se

Fig. 1. Three principal categories of energy planning models and corresponding temporal-spatial-technical features.  
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energy transition also serve as a valuable reference for other 
similar cities. Moreover, the first 10-year modelled results are 
validated with actual data to ensure the model’s validity and 
quality of generated insights.  

(2) From a scientific methodological perspective, we develop a multi- 
objective bottom-up optimisation model that enables assessing 
different transition pathways considering the Energy Trilemma 
goals of cost, emissions, and resilience. The proposed model also 
differs from other long-term energy transition models by the 
setup of hourly temporal resolution to capture the flexibility of 
demand-side technologies such as energy storage. Additionally, 
an efficient model-solving strategy is proposed to tackle the non- 
linear multi-objective computationally-costly issue when model-
ling the resilience by energy diversity. 

The rest of the paper is organised as follows: section 2 describes the 
modelling methodology in detail, proposes a modeling framework for 
energy planning, and introduces the multi-objective optimisation and 
decision-making functions. Section 3 presents detailed a case study of 
Xiamen City, China. Section 4 analyses the modelling results and dis-
cusses the policymaking implications and methodological contributions. 
Section 5 summarises the key findings and highlights future research 
directions. 

2. Method 

This study addresses city-level energy planning challenges by pro-
posing a bottom-up optimisation model, which optimises energy port-
folio and hourly operation strategy under specific constraints. Fig. 2 
shows the schematic of the proposed model for evaluating different 
transition pathways to meet energy demand based on three competing 
objectives. Inputs of the model include energy demand, energy resource, 
and technology details; subject to constraints of demand–supply bal-
ance, emissions control, and technology operations. The whole model is 
developed based on non-linear programming (NLP), and solved by the 
NLP engine. Several specific features of the proposed model are 
described as follows:  

(1) Various supply and demand-side technologies are considered and 
classified into sets for the ease of model development and further 
model extension.  

(2) Hourly dispatch resolution capturing demand-side flexibility and 
the energy transition pathway over the 20-year horizon are 
optimised simultaneously.  

(3) Multi-objective optimisation and posterior decision-making 
based assessment of the trade-offs of the Energy Trilemma. 

2.1. Model assumptions 

To tackle the research question and minimise the computational ef-
forts, the following assumptions are included in the model formulation:  

(1) The model assumes perfect foresight over the entire planning 
horizon;  

(2) Each year during the planning horizon is sliced into certain 
representative slots;  

(3) We model the targeted system as one node and can purchase 
electricity from the wider national grid but do not consider 
feeding power back to the national grid; surplus can be stored in 
pumped hydro energy storage (PHES) if available; 

(4) We model the installed capacity of each technology as a contin-
uous variable considering the computational expense caused by 
the nonlinearity for modelling the diversity;  

(5) We take the high-level master planning perspective, where 
policy-makers can make overall decisions on investment timing, 
capacity expansion, and operational strategy for each energy 
technology. 

2.2. Model temporal resolution 

The temporal resolution of the proposed model is shown in Fig. 3, 
where the modelling horizon is 2010 ~ 2030 and the model has finer 
season-day-scenario-hour resolutions to model the demand-side flexi-
bility and engagement of storage technologies. Three representative 
seasons of summer (Apr. 15th to Oct. 15th), winter (Dec. 15th to Feb. 
15th), and the transition season (the rest of days) are considered; and 
further represented by two typical days, including a weekday and a 
weekend day. For each kind of typical day, four scenarios representing 
the fluctuation of solar and wind profiles are considered with hourly 
resolution. Hence, each year is sliced into 576 temporal slots (i.e. 3 
seasons × 2 days × 4 scenarios × 24 h = 576 temporal slots). Investment 
decisions are made annually; whereas operation decisions are made at 
hourly resolution. 

Objective functions

- Supply-demand balance
- Storage charge/discharge
- Ramping/Capacity expansion
- Resilience by diversity
- Emissions peaking

- Annualised cost
- Total emissions
- Diversity Index
Model constraints

- Demand with time
- Available resources
- Technical parameters
- Economic parameters
- Emission factors

Fig. 2. Outline of proposed energy planning framework.  
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The solar and wind profiles fluctuate daily over the time horizon as 
shown in Fig. 3(b and c). The k-means clustering approach is applied to 
generate representative profiles for wind and solar as shown in Fig. 3(d). 
The whole set of hourly weather data is sorted first by representative 
days. Then, for each type of typical day, the array of data points is 
clustered into the pre-defined number of clusters (i.e., 2 in this case), 
such that the Euclidean distance between the data points and the cor-
responding cluster centroid is minimised. For each cluster, a represen-
tative profile can be chosen by collecting the cluster centroids of that 
cluster and is further weighted by the frequency of occurrence for the 
data points in that cluster. Hence, for each kind of typical day, two 
representative profiles (i.e., high profile and low profile) are chosen for 
wind and solar, respectively. The detailed procedure of k-means clus-
tering is explained in Ref. [24]. 

2.3. Model formulation 

This section presents the mathematical formulation of the proposed 
model as outlined below. All parameters and variables have been 
defined in Nomenclature.  

min obj1 = Total Discounted Cost (TDC) by Eq. 5 
min obj2 = Total CO2 Emissions (TCE) by Eq. 6 
min obj3 = Diversity Index (HHI) by Eq. 7 
S.T. Energy balance by Eq. 1  

Capacity expansion constraints by Eq. 2  
Operation constraints by Eq. 3  
Pumped hydro energy storage constraints by Eq. 4   

2.3.1. Energy balance 
The main constraint is the matching of electricity supply and demand 

for every interval as shown in Eq. 1. For each hour, the total electricity 
generation, the electricity import, and the electricity discharge from 
PHES cover the demand and the electricity charge into PHES. The sto-
chastic scenarios of solar and wind would affect all these terms in Eq. 1. 
Edem

y,s,s′ ,d,h +Echa
y,s,s′ ,d,h = Edisc

y,s,s′ ,d,h +Eimpt
y,s,s′ ,d,h × (1 − ηimpt)+

∑

kr
Egen

kr,y,s,s′ ,d,h 

+
∑

ka
Egen

ka,y,s,s′ ,d,h (1) 

where Edem denotes electricity demand, Echa and Edisc are electricity 
charge and discharge, respectively; Eimpt represents electricity import 
considering transmission efficiency of ηimpt; Egen

kr and Egen
ka are electricity 

generated by renewable and combustion-based technologies, 
respectively. 

2.3.2. Capacity expansion 
The investment decisions are made annually in that the energy 

portfolio could change each year; and the electricity generated is 

constrained by the available capacity of each technology as shown in Eq. 
2a. The reserve margin is considered for combustion-based technologies 
in Eq. 2b; while solar power relies on both the annual installed capacity 
and the hourly variation in solar radiation as constrained by Eq. 2c; wind 
power depends on the installed capacity and the hourly variations in 
wind speeds as constrained by Eq. 2d. In addition, upper bounds are set 
on the annual capacity increase in Eq. 2e and total maximum potential of 
each technology in Eq. 2f. 

CAPgen
k,y ⩽CAPgen

k,y− 1 +UPgen
k,y (2a) 

Egen
ka,y,s,s′ ,d,h⩽CAPgen

ka,y × (1 + RMka) (2b) 

Egen
solar,y,s,s′ ,d,h⩽CAPgen

solar,y × SRIy,s,s′ ,h (2c) 

Egen
wind,y,s,s′ ,d,h⩽CAPgen

wind,y × WSFy,s,s′ ,h (2d) 

UPgen
k,y ⩽UPgen

k,y (2e) 
∑

y
UPgen

k,y ⩽
∑

y
UPgen

k,y (2f) 

where CAPgen denotes available capacity for each technology, UPgen 

represents newly installed capacity, RM is a parameter of reserve 
margin, SRI is a parameter of Solar Radiation Index factor (ranges be-
tween 0 ~ 1, 0 is no solar radiation, 1 is maximum solar radiation), WSF 
is a parameter of wind speed factor. 

2.3.3. Operation constraints 
The variations on electricity generation output are constrained by 

ramping limits (Ramp) as derived in Eq. 3a. Other realistic operational 
constraints are also included, such as limits on the penetration levels (by 
setting a ratio of 20%) for variable renewables in Eq. 3b. 
⃒
⃒
⃒Egen

ka,y,s,s′ ,d,h − Egen
ka,y,s,s′ ,d,h− 1

⃒
⃒
⃒⩽Ramp (3a) 

∑

kr
Egen

kr,y,s,s′ ,d,h⩽ratio × Edem
y,s,s′ ,d,h (3b) 

2.3.4. Pumped hydro energy storage (PHES) 
The model incorporates the PHES technology, which offers flexibility 

with the increasing penetration of solar and wind renewables. As an 
established utility-scale electricity storage technology, a typical PHES 
involves reversible pumps/generators, and two reservoirs at low/high 
elevations, respectively [26]. During low-demand and surplus supply 
period, water is pumped up to the upper reservoir for storing electricity, 
i.e., charging; and the stored energy is released to the lower reservoir 
during the high-demand and low-supply periods, i.e., discharging [27]. 
In this study, the flexible operation of PHES is modelled by Eq. 4. In Eq. 
4a, the energy stored (Ein-st

y,s,s′ ,d,h) at h time-slot (i.e. hour) is equal to the 

energy stored (Ein-st
y,s,s′ ,d,h− 1) at previous hour h-1 plus the energy being 

charged into the high reservoir (Echa
y,s,s′ ,d,h) at hour h minus the energy 

being discharged (Edisc
y,s,s′ ,d,h) to the lower reservoir at hour h considering 

Fig. 3. Model temporal resolution (a), wind fluctuating profile (b), solar fluctuating profile (c), and process of generating representative profile (d). (b) and (c) show 
the hourly distributions and variation of wind and solar radiation based on three-year (2013–2015) historical data obtained from online sources [25]. (d) shows the k- 
means clustering approach for generating representative profiles for solar and wind. 
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the charging and discharging efficiency (ηcha and ηdisc) for a certain 
scenario (s’), a typical day (d), a selected season (s), and a year (y). The 
energy stored (Ein-st

y,s,s′ ,d,h) cannot be larger than the installed capacity 

(CAPin-st
y ) or less than 15% of the installed capacity as shown in Eq. 4b. 

The installed capacity (CAPin-st
y ) at y time-slot is equal to the installed 

capacity (CAPin-st
y− 1 ) at y-1 time-slot plus the newly installed capacity 

(UPin-st
y ) as defined by Eq. 4c. The installed capacity (CAPin-st

y ) cannot be 
greater than the maximum potential in practice; the newly installed 
capacity (UPin-st

y ) is limited by annual build-rate (UPin-st) as shown in Eq. 
4d. Meanwhile, both charge and discharge rates have the upper bounds 
(Echa

y and Edisc
y ) as derived in Eq. 4e. 

Ein-st
y,s,s′ ,d,h = Ein-st

y,s,s′ ,d,h− 1 +ηcha × Echa
y,s,s′ ,d,h − Edisc

y,s,s′ ,d,h/ηdisc (4a) 

15% × CAPin-st
y ⩽Ein-st

y,s,s′ ,d,h⩽CAPin-st
y (4b) 

CAPin-st
y = CAPin-st

y− 1 +UPin-st
y (4c) 

CAPin-st
y ⩽CAPin-st, UPin-st

y ⩽UPin-st (4d) 

Echa
y,s,s′ ,d,h⩽Echa

y , Edisc
y,s,s′ ,d,h⩽Edisc

y (4e) 

2.4. Objective function 

The energy system model considers three objective functions from 
economic, environmental, and energy resilience perspectives, namely, 
the total discounted cost (TDC) including energy system investment and 
operation cost, the total CO2 emissions, and the Herfindahl–Hirschman 
Index (HHI) for diversity. 

2.4.1. Economic objective 
The TDC accounts for the investment cost (Cinv), the fuel cost (Cfuel), 

imported electricity cost (Cimpt), and the operation and maintenance 
(O&M) cost (CO&M) over the modelling horizon. The investment de-
cisions are made annually; while other cost terms need to sum over 
representative seasons, days, stochastic weather scenarios, and hours. 
The O&M cost is proportional to the available capacity; while different 
operation scenarios would affect the fuel cost and electricity import cost. 

obj1 = min TDC (5a) 

TDC =
∑20

y=1
1

(1+r)y− y0

(

Cinv
y +

∑

s,d,h
CO&M

y +
∑

s,s′ ,d,h
Cfuel

y,s,s′ ,d,h+
∑

s,s′ ,d,h
Cimpt

y,s,s′ ,d,h

)

(5b) 
Cinv

y =
∑

k
CAPgen

k,y × PCAP
k,y +CAPin-st

y × PCAP
in-st,y (5c) 

CO&M
y =

∑

k
CAPgen

k,y × PO&M
k,y +CAPin-st

y × PO&M
in-st,y (5d) 

Cfuel
y,s,s′ ,d,h =

∑

ka

Egen
ka,y,s,s′ ,d,h

ηka
× Pfuel

ka,y (5e) 

Cimpt
y,s,s′ ,d,h = Eimpt

y,s,s′ ,d,h × Pimpt
y (5f) 

where r is discount rate, y is each year, y0 is the reference year that all 
costs are discounted to, PCAP denotes unit capital price, PO&M is unit 
O&M price, Pfuel is unit fuel price, Pimpt is unit price for the import 
power. 

2.4.2. Environmental objective 
The total CO2 emissions (TCE) over the modelling horizon can be 

calculated as Eq. 6(a and b). The Chinese government commitment on 
emission peaking before 2030 is modeled by Eq. 6c 

obj2 = min TCE (6a) 

TCE =
∑20

y=1

(
∑

kb,s,s′ ,d,h
Egen

kb,y,s,s′ ,d,h × λkb,y +
∑

s,s′ ,d,h
Eimpt

y,s,s′ ,d,h × λimpt,y

)

(6b) 

(
∑

kb,s,s′ ,d,h

Egen
kb,y<20,s,s′ ,d,h × λkb,y<20 +

∑

s,s′ ,d,h

Eimpt
y<20,s,s′ ,d,h × λimpt,y<20

)

>

(
∑

kb,s,s′ ,d,h

Egen
kb,y=20,s,s′ ,d,h × λkb,y=20 +

∑

s,s′ ,d,h

Eimpt
y=20,s,s′ ,d,h × λimpt,y=20

)

(6c) 
where λkb and λimpt denote the emissions factor for combustion-based 

technologies and imported power, and varies annually. 

2.4.3. Diversity objective 
Energy planning with diversity could enhance the resilience of en-

ergy systems by preventing over-dependence on single energy source, as 
the basic idea of diversity is to avoid “putting all eggs in one basket” 
[28]. Energy diversity is the relative contribution of various energy 
sources to the energy mix. In this study, we apply the Herfin-
dahl–Hirschman Index (HHI) as displayed in Eq. 7 because it can provide 
sufficient insights with fewer complex expressions. In order to maximise 
the diversity at the end of the planning horizon, the HHI should be 
minimised as defined in Eq. (7a). 

obj3 = min HHIy=20 (7a) 
HHIy =

∑K
k=1S2

k,y (7b) 
where Sk,y is the share of energy source k in total energy supply for 

each year y, expressed as a whole number. 

2.5. Multi-objective optimisation and decision-making 

Multi-objective optimisation is an efficient tool used to assess the 
trade-offs among competing objectives. We apply the eps-constraint 
based multi-objective optimisation approach for the convenience of 
reformulating the model [29]. Eq. 8a presents the general formulation of 
a bi-objective minimisation problem, where the eps-constraint approach 
converts one objective function f2(x) to a constraint by introducing a 
parameter epsilon (ε), then optimises the other objective function f1(x) 
satifying both the original model constraints and the f2(x) converted 
constraint [30]. The value of ε is determined by Eq. 8b, where the 
maximum f2max(x) can be obtained by minimising f1(x) and collecting the 
f2(x) value in that minimisation of f1(x); the minimum f2min(x) values can 
be obtained by directly minimising f2(x). N is a user-defined number of 
intervals, μ = 0,…,N. By updating the value of ε and running the opti-
misation model as illustrated in Eq. 8a iteratively, a set of optimal so-
lutions can be obtained. Note that the larger the value of N, the finer the 
interval of the obtained optimal results, while the computational 
expense increase accordingly [31]. 

min f1(x)
S.T. f2(x)⩽ε

and constraints from original model 
(8a) 

ε = fmax
2 (x) − fmax

2 (x)− fmin
2 (x)

N μ (8b) 
The set of optimal results from the multi-objective optimisation is 

usually presented as a Pareto frontier [32]. As all of the solutions pre-
sented on the Pareto frontier are non-dominant and all solutions on the 
Pareto frontier are considered optimal solutions, it is a challenge to 
specify one “superior” solution among them. Several posterior decision- 
making approaches can be used to assist the decision-maker in ulti-
mately selecting one superior solution with maximised rationality [33]. 
In this case, we introduce one Euclidean distance-based approach, i.e., 
Technique of Order Preference Similarity to the Ideal Solution (TOPSIS). 
Firstly, all solutions on the Pareto frontier are normalised (fnorm

ij ). Then a 
“Ideal” point located in the theoretical best but not achievable place is 
defined (f ideal

j ), so that the Euclidian distance (EDi+) between each so-
lution on the Pareto frontier and the “Ideal” point can be calculated by 
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Eq. 9a. Next, a “Nadir” point located in the opposite side of the Pareto 
frontier (compared to the “Ideal” point) is defined, and the Euclidian 
distance (EDi-) between each solution on the Pareto frontier and the 
“Nadir” point can be calculated by Eq. 9b. Finally, the solution with the 
largest relative distance (Yi) to the “Nadir” point is considered as the 
superior solution, as derived in Eq. 9c [34]. In this posterior decision- 
making approach, all objectives are assumed equally important by the 
normalisation, then the identification of a “superior” solution merely 

depends on the distribution of all solutions on the Pareto frontier. 

EDi+ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1(f
norm
ij − f ideal

j )
2

√

(9a) 

EDi− =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1(f
norm
ij − fnadir

j )
2

√

(9b) 

Yi =
EDi−

EDi− +EDi+
(9c) 

Fig. 4. Model solving strategy combined the pre-solving technique and eps-constraint multi-objective optimisation. The definitions of µ, N, f1(x) and f2(x) are in 
accordance with Section 5.2 

Fig. 5. Map of Xiamen and its existing energy infrastructure in Fujian Province, China  
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2.6. Model solving strategy 

Because the non-linearity induced by the diversity formulation leads 
to much greater computational efforts than a linear model, we introduce 
a pre-solving technique, i.e., the initial value assignment, to reduce the 
computational requirements. The concept of the initial value assignment 
is to assign proper initial values for variables during the optimisation 
process. Combined with the eps-constraint multi-objective optimisation 
approach, the outline of the pre-solving is depicted in Fig. 4. First, we 
define a dummy and free variable xd, and a dummy objective fd(x). Let 
fd(x) equals to xd = 1. Since the xd is a free variable, the objective 
function of xd = 1 is always true. By running the optimisation model 
with the dummy objective, the solver would instantly generate a feasible 
solution and assign feasible values for all variables satisfying the model’s 
constraints. These feasible values (not optimal) could be valuable initial 
values for the running of optimising f1(x) and f2(x), by which the two 
endpoints on the Pareto frontier can be obtained (illustrated as square 
points). After that, the optimal results for optimising f1(x) could be the 
initial values for the next run of optimising f1(x) align with the itera-
tively update of ε value in the multi-objective optimisation. The iteration 
will end when µ = N-1, where the point next (the triangle point) to the 
endpoint (by optimising f2(x)) is obtained. 

By implementing the pre-solving technique, the computational time 
will be reduced by roughly 20% for different runs of optimisation, with 
case-specific variations on computation time savings. 

3. Case specifications in Xiamen 

Xiamen is a typical coastal city located in Fujian Province on the 
southeast coast of the People’s Republic of China (see Fig. 5). With a 
population of over 3.5 million residents in 2010, Xiamen is one of 
China’s first special economic zones and one of the first batches of low- 
carbon pilot cities [35]. Due to its geographic location, extreme weather 
events of typhoons occur occasionally. 

The energy system of Xiamen city has the following features. Due to 
emission concerns, there are no new plans for building coal-fired power 
plants; the natural gas supply is sufficient; and waste incineration power 
generation is a promising solution considering the growing amount of 
municipal waste produced. Nuclear power is not considered due to land 
limit. Building-integrated photovoltaic (BiPV) pilot projects have been 
initiated as one of China’s demonstration cities for energy-efficient 

urban retrofit with annual availability of 2200 ~ 3000 solar hours but 
face relatively limited available rooftop space. The average wind speed 
is 2.7 m/s [36]; but there are relatively limited potential sites available 
for both off-shore and on-shore due to the city’s land-use patterns and 
landscape constraints [37]. Other than local power generation, Xia-
men’s electricity supply relies heavily on imported electricity from the 
provincial grid of Fujian province, where the proportion of nuclear and 
wind power is gradually increasing, and is sufficient to meet Xiamen’s 
needs. In addition, Xiamen has a geographical advantage for developing 
PHES with a potential of 1,400 MW. Table 1 lists the existing capacity, 
annual expansion limit, and maximal potential of different energy sup-
ply alternatives for Xiamen, based on open literature [38,39] and 
consultation with local authorities. 

The trends of some key input parameters for Xiamen are presented in 
Fig. 6, which is obtained from open literature and calibrated with na-
tional and local situations. The annual electricity demand for 2010 ~ 
2019 is obtained from the local utility company, and the demand for 
2020 ~ 2030 is based on projections from Ref. [40]. The capital cost and 
O&M cost are expected to remain stable or decline, while the fuel cost 
would increase slightly. In addition, the emission factor for coal power, 
gas power, and waste incineration power is assumed to be 0.825, 0.391, 
and 0.358 tons CO2/MWh, respectively. The emission factor for im-
ported power during 2005 ~ 2017 is obtained from published govern-
ment data [41] and future annual emission factors are based on best-fit 
exponential function with an R2 value of 0.97 (with roughly 2 ~ 3% 
annual decline). 

4. Result and discussion 

4.1. System planning trade-off between cost, energy diversity, and 
emissions 

Fig. 7 shows a trade-off between cost and energy diversity, as well as 
the trade-off between cost and CO2 emissions. We present such a trade- 
off using the Pareto frontier, where each solution on the Pareto frontier 
denotes a certain scenario with the optimal system design and dispatch 
strategy. In Fig. 7(a), the diversity-optimal scenario maximises the di-
versity of energy mix with the least diversity index (HHI). Since the 
renewable energy potential (Wind, WI, and PV) is limited and accounts 
for less than 10% in total, imported power, coal power, and gas power 
remain the three main sources of energy supply, with each accounting 
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Table 1 
Existing capacities, build rate limit, and maximal developing potential of each energy technology.  

Technology Existing capacity (MW) Build rate limit (MW/year) Maximum potential (MW) 

Coal 1200 100 1200 
Gas 1000 0 – 
Solar 0 20 500 
Wind 0 40 160 
Waste Incineration 18 15 – 
PHES 0 300 1400  
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for nearly one-third of the energy mix. From the diversity-optimal sce-
nario to the cost-optimal scenario (i.e., the least-cost solution), imported 
power’s share increases gradually with declining share of gas power, 
while the share of coal power remains constant. This is because the cost 
of local coal power remains lowest of all energy technologies, and the 
price of imported power is lower than the cost of local gas power in this 
case. Compared to the cost-optimal scenario, the diversity-optimal sce-
nario requires 3.9% additional cost. This additional cost is mainly 
caused by the cost difference between imported power and local gas 
power. Meanwhile, the PHES technology is only used when the 
requirement for energy diversity is high. Its potential on cost-saving or 
providing flexibility has not been fully realised unless the import power 
price difference on peak/off-peak is more significant. 

Fig. 7(b) shows that, in the emissions-optimal scenario (i.e., the least 
emissions solution), coal power is completely phased out, and imported 
power becomes the biggest contributor with roughly 45.2% share, fol-
lowed by gas power with 40.1% share. This is based on the assumed 
gradual decline of the emission factor for the provincial utility grid, 
lower emissions factor for gas power compared to coal, and the limited 
local resource potential for other renewable energy. As the cheapest coal 
power is phased out, 26.8% additional cost is incurred under the 
emissions-optimal scenario when compared to the least-cost scenario. 

In general, due to the limited potential of renewables, imported 
power, coal power, and gas power are three major drivers for balancing 
the Energy Trilemma of Xiamen. In the trade-off between cost and en-
ergy diversity, imported power and gas power are directly competing 
with each other. In the trade-off between cost and emissions, coal power 
and gas power are seen as the two major competitors. In addition, a 
superior solution on the Pareto frontier has been specified for Fig. 7(a) 
and (b) individually by the TOPSIS posterior decision-making approach. 
The identified superior solution has maximal rationality for representing 
the trade-off between conflicting objectives, and for the ease of policy-
making if needed. 

Fig. 8 presents the energy portfolio evolution over the planning ho-
rizon and the hourly dispatch strategies of typical days for the three 
representative scenarios of the cost-optimal scenario, the diversity- 
optimal scenario, and the emissions-optimal scenario, as well as two 
superior solutions on Pareto frontiers as plotted in Fig. 7(a and b), 
respectively. 

For the cost-optimal scenario (Fig. 8a ~ c), the coal power capacity 
remains stable over the entire planning horizon due to its low opera-
tional cost, accounting for 72.9% of annual energy output in 2030. Solar 
PV enters the energy mix in 2021 when the installation and O&M cost 
gradually drops to a competitive level. The capacity slowly increases 

under the annual build rate limit, leading to an annual energy out of 
2.4% in 2030. From the system dispatch perspective, the system oper-
ational trends remain similar for different typical days; the hourly 
output of coal power remains stable, the output of PV only occurs during 
the daytime (6:00 ~ 17:00), and the remaining demand gap is met by 
imported power. 

For the diversity-optimal scenario (Fig. 8d ~ f), the capacities of all 
technologies start to increase at the beginning of the planning horizon so 
as to maximise the diversity of power supply while considering the 
annual build rate limits. Among which, the renewables of solar, wind, 
and waste incineration power account for 2.4%, 5.4% 2.8% of the 
annual energy output in 2030. In terms of system dispatch, gas power, 
coal power, and waste incineration power output remain constant, while 
PV and wind power output are determined by climatic and resources 
availability conditions. PV output only occurs during the daytime, while 
wind power output is larger during the night-time than the daytime. 
PHES charging by surplus power occurs during the off-peak hours (1:00 
~ 9:00) while PHES discharge occurs during the peak hours (12:00 ~ 
21:00). For different seasons, no significant difference is observed in the 
outputs of all local power generation technologies, and seasonal varia-
tions in demand are met by flexible imported power. 

For the emissions-optimal scenario (Fig. 8g ~ i), coal power is 
completely phased out. Gas power and imported power are two major 
supply sources, accounting for 40.1% and 49.0%, respectively; while 
solar, wind, and waste incineration power together account for the 
remaining 11% of total supply. In terms of the hourly dispatch strategy, 
similar to other scenarios, both the output of gas power and waste 
incineration power are stable during the whole day; solar and wind 
output depend on the climate condition; and unmet demand is fulfilled 
by imported power. The seasonal demand variations are covered by the 
imported power, while the operational strategies of the other technol-
ogies remain unchanged. 

The Superior-1 solution (Fig. 8j ~ l), considering the trade-off be-
tween cost and diversity, is similar with the Superior-2 solution (Fig. 8m 
~ o), considering the trade-off between cost and emissions from the 
overall transition perspective over the planning horizon. The renewables 
of solar, wind, and waste incineration power account for 6.1% and 7.2% 
in total for the annual energy output of Superior-1 and Superior-2 so-
lution, respectively, in 2030. The difference exists on the share of import 
power and gas power, where the import power and gas power account 
for 57.9% and 15.2% of annual energy output, respectively, in 2030 for 
Superior-1 solution; whereas the values are 50.8% and 20.2% for 
Superior-2 solution in 2030. The two superior solution are similar in 
terms of dispatch strategy, i.e. gas power and coal power keep stable all- 

Fig. 7. Pareto frontier representing the trade-off between cost and diversity (a); the trade-off between cost and CO2 emissions (b). The total discounted cost is the 
overall cost of 20-years horizon, the set of bar chart on the up-right corner represents the energy mix at 2030 for each optimal solution on the Pareto frontiers. 
Abbreviations: WI – waste incineration power, PV – photovoltaic, PHES – pumped hydro energy storage. 

R. Jing et al.                                                                                                                                                                                                                                     



Applied Energy 283 (2021) 116222

10

day, solar power output only occurs during the daytime, and the rest 
fluctuating demand is covered by import power. 

As seen from three representative scenarios and two superior solu-
tions, the outputs of combustion-based technologies, i.e., gas, coal, and 
waste incineration power, generally remains stable all-day, and the 
demand fluctuations are mainly covered by imported power. The output 
of renewable solar and wind power varies depending on the climate 
conditions, but their impacts on the overall power supply are insignifi-
cant due to the limited local resource potential, less than 9% of the 

annual energy output in 2030. In addition, as a representative of 
demand-side technology, PHES is only adopted when energy diversity is 
considered as the objective function. From the emissions perspective, 
the emissions-optimal scenario generates the least emissions as ex-
pected; while the cost-optimal scenario has lower emissions than the 
diversity-optimal scenario in 2030 as a result of declining emission 
factor for imported power from the Fujian provincial grid. 
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Fig. 8. Comparison of the cost-optimal scenario (a ~ c), the diversity-optimal scenario (d ~ f), the emissions-optimal scenario (g ~ i), the superior solution identified 
(known as Superior-1) considering the trade-off between cost and diversity (j ~ l), as well as the superior solution (known as Superior-2) considering the trade-off 
between cost and CO2 emissions (m ~ o). Both Superior-1 and 2 are identified by the TOPSIS approach. Energy mix per year over the planning horizon (a, d, g, j, and 
m), energy balances for the representative summer-weekday by 2030 (b, e, , h, k, and n), energy balances for the representative winter-weekday by 2030 (c, f, i, l, and 
o). Abbreviations: WI – waste incineration power, PV – photovoltaic, PHES_cha/dis – power charge/discharge for the pumped hydro energy storage. 
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4.2. Comparison of modelled results with real data and implications 

For validation purposes, we compare the annual energy breakdown 
(2010 ~ 2019) of the three modelled scenarios with the real-world 
scenario based on actual reported historical data as shown in Fig. 9. In 
the real-world scenario, the proportion of coal power remains stable due 
to its low operational cost, and no significant increase in the proportion 
of gas power is observed over the time horizon due to the relatively high 
price of natural gas. The increase in electricity demand is mainly met by 
imported power from the provincial grid, while the total share of waste 
incineration power and PV is less than 2%. 

Several policy insights can be generated by comparing three repre-
sentative scenarios with the real-world scenario. (1) The cost-optimal 
scenario in Fig. 9(b) turns out to be most similar to the real-world sce-
nario as the economy has remained a key factor for guiding decision- 
making. (2) Increasing the proportion of natural gas power is an effec-
tive measure for emissions reduction when the resource potential of 
solar and wind is limited as indicated in Fig. 9(c). (3) Implementing 
demand-side PHES will contribute to energy diversity, but coal, gas, and 
imported power remain the three major contributors for a diversity- 
optimal solution as shown in Fig. 9(d). In addition, because Xiamen’s 
power supply relies on imported power to a considerable extent under 
all three scenarios, the electricity tariff, emission factor, and energy 
portfolio of the imported power would greatly affect the city’s Energy 
Trilemma outcomes. 

4.3. Methodological implications 

The proposed optimisation framework of this study has the following 
advantages: (1) hourly temporal-resolution that can capture the 
demand-side flexibility such as utilisation of energy storage technology. 
(2) representative temporal-resolution in terms of years-seasons-days- 
scenarios-hours to capture the fluctuation of renewables and to eval-
uate short-term dispatch impacts on the long-term planning for the 
whole system. (3) ability to evaluate energy transition pathways 
considering the energy trilemma factors that are difficult to reconcile. 
Additionally, the bottom-up optimisation framework can be further 
extended to model several other sectors, including heating supply, 
transportion energy, and hydrogen planning, and re-formulated to 
capture parametric uncertainties through stochastic programming. 

Our current approach has some limitations. To meet the goal of 
resilience; we introduce the diversity index as an objective function, 
which leads to a non-linear model with significantly greater computa-
tional requirements than a linear model. Although the concept of energy 
resilience is still not clearly defined, we introduced the diversity index in 
attempt to capture resilience goals because it is acknowledged that 
strengthening the vulnerable elements by increasing redundancy and 
energy storage; and enhancing the diversity of alternatives in the energy 
system can enhance energy systems’ resilience at the design level [45]. 

We also adopted PHES as a demand-side management measure and 
introduced the diversity index as an objective function. A variety of 
indices [46], including the Herfindahl–Hirschman Index, Stirling Index, 
and Shannon-Wiener Index [47], can quantify the diversity of energy 
systems with different insights. But because all diversity indices found in 
literature causes non-linearity, more computationally efficient ap-
proaches are needed to evaluate the goal of resilience other than the 
diversity index. 

Due to the computational complexity induced by the non-linearity 
from the diversity objective, the proposed model is deterministic 
without considering parametric uncertainties. Parametric uncertainties 
might have significant impact on the modelling results, including the 
future energy demand, fuel prices, and technology developments. Once 
again, more efficient ways of modelling resilience need to be explored so 
that the stochastic model could be further developed (based on the 
existing deterministic model) to address parametric uncertainties. 

Another shortcoming of this study is the assumption on the perfect 
foresight of fully rational decision-makers over the time horizon. 
Though the assumption on the perfect foresight is widely applied in 
research field [48], in reality, investment decision-making is much more 
complex than simply cost minimisation. However, incorporating com-
plex heterogeneous behavioral and any social aspects into the 
municipal-level planning model requires extensive research on relevant 
data and tools, as well as large remaining uncertainties. Thus, even 
though the gap between planning and real-world actions persists, energy 
planning can nevertheless still generate valuable insights by evaluating 
different possible scenarios and corresponding costs and benefits. 

5. Conclusions 

In this work, we developed a municipal-level, bottom-up optimisa-
tion framework with hourly temporal resolution and demand-side 
flexibility, and applied it to explore the sustainable transition path-
ways for the electricity sector of Xiamen City. Various scenarios based 
on the trade-offs among the Energy Trilemma of cost, emissions, and 
resilience are developed and analysed using multi-objective optimisa-
tion and decision-making approaches. The modelled scenarios are 
further verified by comparison with real-world conditions. The key 
findings include the following:  

(1) Compared to the least-cost scenario, 3.9% additional cost is 
required for an optimal diversity solution for supporting energy 
resilience; and 26.8% additional cost is required to achieve a 
least-emission solution as the natural gas price is relatively high.  

(2) Coal power is still a cost-efficient technology. Meanwhile, with 
limited local renewable resourced potential, natural gas and im-
ported power play key roles in both the low-emissions and high- 
diversity electricity transition of Xiamen. As a demand-side 
technology, pumped hydro energy storage is only adopted 
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when optimising the diversity index but not considered to 
contribute to the goals of minimising cost or emissions. 

(3) The non-linearity caused by the diversity index significantly in-
creases the computational requirements for the model, and more 
computationally efficient ways of formulating energy resilience 
considerations need to be developed in future work. 

By evaluating different possible pathways for a sustainable transition 
of Xiamen’s electricity sector to help guide the decision-making pro-
cesses of local policymakers, this study also offers important insights for 
other similar coastal cities considering energy transition pathways to 
balance Energy Trilemma. 
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shift in TIMES models through elasticities of substitution. Appl Energy 2018;232: 
740–51. 

[10] Zou H, Du H, Broadstock DC, Guo J, Gong Y, Mao G. China’s future energy mix and 
emissions reduction potential: a scenario analysis incorporating technological 
learning curves. J Cleaner Prod 2016;112:1475–85. 

[11] Balyk O, Andersen KS, Dockweiler S, Gargiulo M, Karlsson K, Næraa R, et al. 
TIMES-DK: Technology-rich multi-sectoral optimisation model of the Danish 
energy system. Energy Strategy Reviews. 2019;23:13–22. 

[12] Ringkjøb H-K, Haugan PM, Nybø A. Transitioning remote Arctic settlements to 
renewable energy systems – A modelling study of Longyearbyen. Svalbard. Applied 
Energy. 2020;258:114079. 

[13] Shi W, Ou Y, Smith SJ, Ledna CM, Nolte CG, Loughlin DH. Projecting state-level air 
pollutant emissions using an integrated assessment model: GCAM-USA. Appl 
Energy 2017;208:511–21. 

[14] Nordhaus W. Chapter 16 - Integrated Economic and Climate Modeling. In: Dixon 
PB, Jorgenson DW, editors. Handbook of Computable General Equilibrium 
Modeling: Elsevier; 2013. p. 1069-131. 
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