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Abstract
Longitudinal environmental heterogeneity and directionality of the water movement are key features that

may exert contrasting forces on riverine plankton assembly. Directionality strengthens dispersal-driven assem-
bly, but this can be masked by urbanization-induced environmental heterogeneity along the river continuum.
In the light of this contrast, we aimed at delineating the relative importance of assembly processes generating
distribution patterns of bacterioplankton and phytoplankton communities in a river draining an urbanizing
watershed in Southeast China. We applied variation partitioning analysis, neutral community model, and quan-
titative process estimate on molecular and morphological plankton data obtained over the years 2012–2016.
Despite a relatively short distance between sampling sites (< 20 km), plankton community similarity decreased
with increasing distance from the upstream pristine site toward the downstream urban area, and formed clusters
that roughly corresponded to five habitat patches, predefined based on hydrology and longitudinal landscape
change. These distribution patterns were predominantly driven by deterministic and stochastic processes for
phytoplankton and bacterioplankton, respectively, indicating a balance between dispersal due to fluvial connec-
tivity and local selective pressures. Considering the global loss of river connectivity due to downstream fragmen-
tation and flow regulation, our findings imply that plankton-based ecological approaches could be useful to
hedge against an uncertain future of rivers draining urbanizing watersheds in an ecologically sustainable way.

Human activities are reshaping the distribution patterns of
aquatic communities across the globe through habitat alter-
ation (Vitousek et al. 1997; Yamazaki and Trigg 2016; Ander-
son et al. 2020). In particular, there is a very long history of
habitat alteration of rivers in China; and more recently, the

severity and frequency of these disturbances has highlighted a
need to explore their effects on plankton communities (Peng
et al. 2020; Yang et al. 2022). However, these studies remain
rare, especially for riverine ecosystems under human pressure,
yet they are among ecosystems undergoing major biodiversity
loss (Vörösmarty et al. 2010; McCluney et al. 2014; Anderson
et al. 2020). In rivers draining urbanizing watersheds, the
most frequent types of disturbances include channelization,
reservoir and dam construction, allochthonous biotic and abi-
otic inputs, and changing hydrological regimes (Wenger
et al. 2009; Bai et al. 2017), these could affect ecological feed-
backs including those involving plankton (Er}os and
Lowe 2019; Uchida et al. 2021). Thus, unraveling the pro-
cesses controlling the community assembly of riverine plank-
ton in urbanizing watersheds is crucial for both theoretical
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and applied freshwater ecology, and for the goal of
maintaining riverine ecosystem function.

Understanding ecological processes that control distribu-
tion patterns of microbial communities is a longstanding
question in microbial ecology (Hanson et al. 2012). A key
idea has been the importance of what are referred to as
“deterministic processes,” where aspects of the organism
environment—abiotic or biotic—explain which organisms
can survive at a particular site (Warming 1909; Hanson
et al. 2012; Vass and Langenheder 2017; Ning et al. 2019).
An alternative approach is to view community assembly as
driven by stochastic processes such as differences among taxa
in birth, death, and migration, independent of species traits
(Hubbell 2001; Chen et al. 2019). This idea makes assump-
tion that all the species have the same fecundity, indepen-
dent of their environmental conditions, so that recruitment
is solely proportional to the relative abundance of the indi-
viduals of a given species (May et al. 2007). Deterministic
and stochastic processes are not mutually exclusive; it is the
relative importance of either process that is hypothesized to
alter microbial diversity and its biogeochemical function
(Graham et al. 2016; Graham and Stegen 2017).

Over the past 10 years, a comprehensive framework view-
ing assembly processes as a result of an interplay of four
processes—selection, drift, speciation, and dispersal—
governing microbial populations and macroorganisms has been
developed (Vellend 2010; Hanson et al. 2012). This framework
has offered ways to address a multiplicity of the processes that
simultaneously underlie community assembly in natural and
engineered ecosystems (Hanson et al. 2012; Nemergut
et al. 2013; Goldford et al. 2018). In this context, the outcomes
of the recent studies on microbial communities have been
highly context-specific. Whereas the studies by Wang et al.
(2013), Liao et al. (2017), and Yan et al. (2017) indicated the
dominance of deterministic processes in structuring aquatic
microbial community, the studies by Liu et al. (2018), Chen
et al. (2019), and Tang et al. (2020) showed that mainly sto-
chastic processes structure the aquatic microbial community. In
the aquatic ecosystems specifically, different groups of organ-
isms may be structured by different assembly mechanisms. For
instance, Wang et al. (2020) found that stochastic processes
were less pronounced for archaeal than for bacterial communi-
ties in a subtropical river-bay system, and Gad et al. (2020)
found that deterministic processes were primarily governing
the microeukaryotic habitat specialists while stochastic pro-
cesses were more important for habitat generalists in an anthro-
pogenically impacted river. Changes in hydrological regimes
could also influence the relative importance of deterministic
and stochastic processes, as stable hydrological periods tend to
allow aquatic communities to assemble deterministically
(Isabwe et al. 2018; Larsen et al. 2019).

In the context of rivers in watersheds under rapid urbaniza-
tion, hypothetically, longitudinal environmental heterogeneity

and unidirectional water flow may exert counteracting effects
on the assembly of the plankton community. On the one
hand, dispersal-driven processes (e.g., dispersal homogeniza-
tion) may be strengthened by flow and directionality especially
because plankton are easily washed downstream (Chen et al.
2019), with no obvious way for them to move upstream against
the current. On the other hand, the effects of dispersal and
other neutral processes can be overwhelmed by environmental
heterogeneity, resulting in more dissimilar communities than
expected under the assumptions of the neutral theory (V�alyi
et al. 2016). For instance, a recent study by Huber et al. (2020)
challenged the general view that the strength of selection was
weakened due to dispersal homogenization by showing the
major effect of environmental heterogeneity in determining
the ecological processes of bacterioplankton in Paran�a River,
South America.

Many of the above studies employed solely multivariate,
neutral, or null model approaches to determine the relative
importance of deterministic and stochastic processes structur-
ing microbial communities (Zhou and Ning 2017; Chen
et al. 2019). However, each of these approaches has its own
assumptions, strengths, and caveats. For instance, models
built on empirical randomization algorithms may lack clear
biological mechanism, and most approaches used to infer
environmental selection were insufficient to distinguish it
from the outcome of biotic interactions (Cadotte and
Tucker 2017; Zhou and Ning 2017). Given that inferences
drawn from different approaches are less likely to be artifacts
of a particular approach, integrating multiple models synergis-
tically could improve the assessment of the relative impor-
tance of different assembly processes.

Based on the assumption that local microbial communi-
ties generally have large site-to-site variation in species
composition when environmental conditions are different
(Zhou et al. 2014), we hypothesized a decreasing plankton
community similarity with increasing longitudinal distance
between sites along a river draining an urbanizing water-
shed. Regarding inferences that disturbance increases the
importance of deterministic processes (Chase 2007; Jiang
and Patel 2008; Peng et al. 2020), we also hypothesized that
deterministic processes would primarily shape patterns of
plankton community, even in the presence of a strong uni-
directional flow of water. To test these hypotheses, we used
an observational approach on Houxi River, a river system in
southeast China that exhibits a range of different environ-
ments along its length (Fig. 1a). We used the variation par-
titioning analysis (VPA), the neutral community model
(NCM), and the quantitative process estimate (QPE) to show
that riverine plankton (bacterioplankton and phytoplank-
ton) communities were closely associated with longitudinal
environmental heterogeneity induced by urbanization, and
that stochastic processes were more important in structur-
ing the bacterioplankton community.
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Materials and methods
Study area and sampling

Houxi River is the 2nd largest river in Xiamen city, Fujian
province, southeast China (Yang et al. 2022). The total length

of the river is approximately 25 km and it drains a watershed
of around 205 km2 of which 29% were urbanized in 2013
(Yu et al. 2014). This ecosystem has a subtropical monsoon cli-
mate with an annual mean temperature of 20.7�C and a mean
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Fig. 1. Study area and longitudinal changes of environmental variables along Houxi River. (a) Map of the Houxi River watershed (Xiamen city, China)
showing the 10 sampling sites grouped into five different habitats. (b–g) Variation of six selected environmental variables including the water temperature
(WT), pH, salinity, TC, TN, and TP. Note that other environmental variables were shown in Supporting Information Fig. S3. (h) PCA of all determined envi-
ronmental variables and (i) enhanced hierarchical clustering revealing three distinct clusters. From left to right, the 1st cluster (Group 1) includes samples
from the upstream pristine and reservoir habitats (Pristine, Shidou, and Bantou), the 2nd cluster (Group 2) was mainly composed of samples from the Houxi
sites and a few samples from Xinglin, and the 3rd cluster (Group 3) consisted of only nine samples from the downstream urban area (Xinglin). (j) The correla-
tion between a matrix of geographical distance and a matrix of the Euclidean distance of the environmental variables between any two sampling sites.
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annual precipitation of 1335.8 mm (Peng et al. 2020). The
samples were collected from the surface layer (< 0.5 m) of the
river water. Sampling was conducted twice a year over the
period of 5 yr (2012–2016) at 10 sites selected along the river
continuum (Fig. 1a), making a total of 100 samples. The
timing of sampling was established based on the annual rain-
fall pattern, under low (January) and high (July) water flow
periods, respectively.

The 10 sites form a northwest to southeast transect, starting
at a small stream in the hills and finishing where the river
flows through parts of urban northwest Xiamen (Supporting
Information Fig. S1). In this study, the Houxi River was
divided into five longitudinal habitats according to the
hydrology and landscape characteristics. Site 1 (Pristine) was
located in the upstream headwater flowing through forested
hills and discharging into Shidou Reservoir where two sites
(sites 2 and 3) were selected in the riverine and lacustrine
zones of the reservoir. The sites 4 and 5 were located in
Bantou Reservoir, immediately downstream of Shidou Reser-
voir. Both reservoirs are located in a forested landscape. The
sites 6, 7, and 8 were located in river section passing through
Houxi town and both sites 7 and 8 received wastewater dis-
charges via connected pipes with small-scale agricultural activ-
ities along the river. Site 8 was located in an adjacent tributary
to the main river. The remaining two sites (9 and 10) were
located in an urban reservoir of the urban area of Jimei New
Town, Xiamen with an influence of seawater intrusion.

Environmental data collection
Water temperature (WT), turbidity, pH, salinity, electrical

conductivity (EC), chlorophyll a (Chl a), and oxidation reduc-
tion potential (ORP) were collected in situ by using a Hydrolab
DS5 water quality analyzer (Hach Company, Loveland, CO,
USA). Current velocity was measured using SonTek Flow
Tracker (Handheld-ADV® YSI, San Diego, CA, USA). The con-
centrations of total nitrogen (TN), total carbon (TC), and total
organic carbon (TOC) were determined using TOC/TN-VCPH
analyzer (Shimadzu, Kyoto, Japan). Total phosphorus
(TP) concentration was measured using a spectrophotometric
method after digestion; while ammonium nitrogen (NH4-N),
nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), and phos-
phate phosphorus (PO4-P) were determined following our pre-
vious procedure (Yang et al. 2012; 2017; Isabwe et al. 2018).
The concentrations of NH4-N, NO3-N, and NO2-N were
summed to obtain dissolved inorganic nitrogen (DIN).

Phytoplankton species enumeration
A total of 2.5 L of surface water was collected at each sam-

pling site and preserved in Lugol’s iodine solution immediately
after sampling. The samples were concentrated from an original
volume of 2.5 L to a final volume of 30 mL after sedimentation
for 48 h (Lv et al. 2014). A 100-μL aliquot was smeared on a
counting chamber for species identification and enumeration
using an inverted microscope (Motic AE31, Xiamen, China)

under 400� magnification. At least 500 phytoplankton individ-
uals in each sample were identified using identification keys of
Hu and Wei (2006). The number of cells per liter for each spe-
cies was estimated and used for further analyses. Following
common practice in freshwater biology, cyanobacteria, as pho-
tosynthetic microbes, were included within the phytoplankton
community (Yang et al. 2012, 2017).

DNA extraction and quantitative PCR (qPCR)
Immediately after sampling, 150–500 mL of water samples

were prefiltered through a 200-μm pore-size sieve to remove
large particles and then filtered through 0.22-μm pore-size
polycarbonate filters (Liu et al. 2015). The filters were stored at
�80�C until DNA extraction. Filters were cut into small pieces
using flame-disinfected scissors in a sterilized biological safety
cabinet (Airtech) and packed in Lysing Matrix tubes for further
steps of DNA extraction with the FastDNA® Spin Kit and the
FastPrep Instrument (MP Biomedicals) following the manufac-
turer’s instructions. The quality of the extracted DNA was
checked by using NanoDrop 2000 (Thermo Scientific), assum-
ing that good DNA extracts should have OD260/280 purity of
1.8–2.0 and a concentration > 20 ng μL�1. In addition, 16S
rRNA gene was quantified through qPCR as summarized in
the Supporting Information Text S1.

Illumina sequencing and bioinformatics
A 20-μL DNA sample was amplified using bacterial primer

pair 341F (50-CCTAYGGGRBGCASCAG-30) and 806R (50-
GGACTACNNGGGTATCTAAT-30) (Hugerth et al. 2014) and
subjected to sequencing of the V3–V4 region of the 16S
rRNA gene. The libraries were prepared as described in the
Supporting Information Text S2 and sequenced on Illumina
HiSeq platform (Illumina, Inc.) using paired-end method.
Paired-end reads were merged with FLASH (Magoč and
Salzberg 2011), and quality control (barcode and primer
sequence removal) was carried out in QIIME 1.9 (Caporaso
et al. 2010).

The bioinformatics pipeline was carried out using
VSEARCH (Rognes et al. 2016). Briefly, merged sequences were
filtered to find a representative sequence of one or more
sequences in the data. Then the unoise3 algorithm with its
default minsize8 was used to denoise sequences, remove chi-
meras from a set of unique sequences, and generate biologi-
cally correct sequences (i.e., zero-radius operational taxonomic
units [zOTUs]). These sequences were used for operational tax-
onomic unit (OTU) counts across all samples using the
usearch_global command. Taxonomy assignment was done by
using the sintax algorithm on query sequences mapped
against the Greengenes v13_8 database (DeSantis et al. 2006).
Furthermore, a Newick-formatted phylogenetic tree was gener-
ated from the zOTUs fasta file using cluster_agg command. The
resulting OTU table was subjected for the deletion of single-
tons, archaea, and chloroplasts, and was rarefied to the lowest
sequences per sample, that is, 16,854 sequences per sample.
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General statistical analyses
Statistical analyses were carried out in R version 4.0.3

(R Core Team 2019). Sampling sites were classified into the
predefined five habitat types as this has been previously
shown to be a useful approach for addressing microbial distri-
bution (Martiny et al. 2006; Aguirre de C�arcer 2019; Peng
et al. 2020). This classification was based on a twofold factor:
landscape pattern and hydrology, iterating major conse-
quences of urbanization on riverine ecosystems (Supporting
Information Fig. S1). Prior to hypothesis testing, we sought to
establish whether environmental variables across the five
predefined habitat patches were statistically different to vali-
date the appropriateness of the predicted heterogeneity along
the river. This analysis was performed using a one-way
ANOVA followed by Tukey’s HSD means comparisons with
samples grouped by different predefined habitats. Further-
more, the principal component analysis (PCA) and enhanced
hierarchical clustering of the log(x + 1)-transformed environ-
mental variables (except the pH) were used to detect the over-
all sample clustering. The Euclidean distance of the
environmental variables was regressed against a matrix of spa-
tial distance between the sampling sites. These analyses were
carried out and visualized by using the R packages factoextra
(Kassambara and Mundt 2017), ggplot2 (Wickham 2016),
ggpubr (Kassambara 2018), and ecodist (Goslee et al. 2020).
Plankton diversity indices were computed using the vegan
package (Oksanen et al. 2013) and were used for detecting
compositional patterns. To test whether community Bray–
Curtis similarities were significantly similar or different across
habitat types and time (i.e., season or year), the analysis of
similarities (ANOSIM) was used with 999 permutations, and
the data were visualized in two-dimensional nonmetric multi-
dimensional scaling (NMDS) plots. Distance–decay relation-
ships were supplemented by Mantel tests, using the Spearman
correlation coefficient, to check whether the geographical dis-
tance between sampling sites could correlate with community
similarity as a means to evaluate distribution patterns. Both
the community alpha diversity (richness) and beta diversity
(estimated using the 1st NMDS axis) were used as response var-
iables in generalized additive model (GAM) to evaluate the
influence of environmental factors.

VPA, NCM, and QPE
Three models that fully or partially depict the relative

importance of the assembly processes were used sequentially.
First, the relative importance of local environmental effects
and spatial effects on community variation was assessed by
using the VPA based on redundancy analysis (RDA). Spatial
effects were represented by principal coordinates of neighbor
matrices (PCNMs) generated by using geographical coordi-
nates and the pcnm function of the vegan package (Liu
et al. 2013). Local environmental effects were the measured
environmental variables. Prior to their use as predictors, these
environmental variables were log-transformed, with the

exception of the pH, to improve data homoscedasticity and
normality. A forward selection procedure was run on both
groups of variables in order to reduce multicollinearity among
all predictors. Second, the fit to the NCM by which random
immigrations, births, and deaths are assumed to determine
the relative abundance of taxa in a community was used
(Sloan et al. 2006). This model predicts a relationship between
occurrence frequency of individuals (OTUs/species) in a set of
local communities and their relative abundance across the
wider metacommunity, with N describing the met-
acommunity size and m indicating the immigration rate
(Burns et al. 2016; Chen et al. 2019). Third, a QPE (sensus Vass
et al. 2020) was used to quantify the process of each pairwise
turnover for randomized bacterial OTUs data. In this
approach, it is assumed that the phylogenetic signal occurs
when more closely related species are more ecologically similar
and quantitatively estimates the percentage of compositional
turnover linked to deterministic (selection) and stochastic pro-
cesses (Stegen et al. 2013; Zhou and Ning 2017). The percent-
age of pairwise comparisons whose beta-nearest taxon indices
(ßNTIs) were > 2 and < �2 were denoted as variable selection
and homogeneous selection, respectively. The remaining
pairwise comparisons were denoted as homogenizing dispersal
and dispersal limitation if their modified Raup–Crick for Bray–
Curtis (RCBray) coefficients were < �0.95 or > 0.95, respec-
tively. Pairwise comparisons with RCBray metric between
�0.95 and 0.95 were classified in the “undominated fraction”
(Supporting Information Fig. S2). This exercise was completed
on samples grouped by year of sampling (190 pairwise com-
parisons from 20 samples collected each year) and when all
samples were considered as a single metacommunity (4950
pairwise comparisons from 100 samples). The three models
including VPA, NCM, and the QPE were run by using the R
scripts developed, respectively, by Bahram et al. (2016), Burns
et al. (2016), and Stegen et al. (2013).

Results
Longitudinal environmental heterogeneity

There were no statistically significant differences (p > 0.05)
in physicochemical variables, namely, the WT, pH, and ORP
across the five predefined habitats. However, nutrient-related
variables such as the TC, TN, TP, DIN, and PO4-P differed sig-
nificantly across the five predefined habitats (Fig. 1b–g;
Supporting Information Fig. S3a–h). Spatial differences in
nutrient-related variables were substantial between the sub-
urban sites of Houxi, urban sites of Xinglin and the rest of the
sites in the upstream habitats. These less-disturbed sites com-
prising a fast flowing rocky stream (pristine site) and two adja-
cent reservoirs of Shidou and Bantou had no significant
differences in all environmental variables between them
(p > 0.05) with the exception of water velocity. When all envi-
ronmental variables were pooled together in a PCA, they
highly replicated the five predefined habitats (Fig. 1h). By
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using enhanced hierarchical clustering, similar sample group-
ing was observed with an exception of samples from the pris-
tine site, which were clustered together with those from the
two adjacent reservoirs of Shidou and Bantou (Fig. 1i). Fur-
thermore, by regressing the Euclidean distance of all sampled
environmental variables, we found that site-to-site difference
among environmental variables increased with increasing dis-
tance from the upstream towards the downstream sites
(Fig. 1j). Spatial differences (between different habitats) in
environmental variables were robustly maintained across the
5 yr of sampling within which significant seasonal differences
were only obvious for WT (Supporting Information Fig. S4).

Patterns of plankton community distribution across
different habitats

In total, 10,330 bacterial OTUs and 305 phytoplankton spe-
cies were identified in this study, and the rarefaction curves
indicated that the majority of bacterioplankton and phyto-
plankton taxa had been recovered (Supporting Information
Fig. S5). The highest number of bacterial OTUs was observed
in the upstream pristine site, whereas the lowest was observed
in reservoir habitats of Shidou and Bantou. In contrast, the
highest richness in phytoplankton community was found in
the Shidou and Bantou reservoirs and the lowest in
Xinglinwan Reservoir habitat (Fig. 2). About 37.1% bacter-
ioplankton (3834 OTUs) and only 7.9% phytoplankton
(24 species) taxa were shared by all habitats (Supporting

Information Fig. S6). Generally, alpha diversity differed across
the five predefined habitat patches (Supporting Information
Fig. S7) and the taxonomic composition of both bacter-
ioplankton and phytoplankton communities varied spatially
(Supporting Information Fig. S8; Text S3).

Both bacterioplankton and phytoplankton communities
exhibited significant distance–decay relationships despite a
relatively short distance between the sampling sites. More
importantly, the ordination space of the community similar-
ity returned sample clusters based on habitats types rather
than seasonality or years of sampling (Fig. 3; Supporting
Information Fig. S9). The global R of the ANOSIM was higher
than 0.5 for both bacterioplankton (R = 0.525, p < 0.01;
Fig. 3a) and phytoplankton (R = 0.542, p < 0.01; Fig. 3c)
across the five habitats. There was a low but significant clus-
tering level when communities were grouped by the years of
sampling (R = 0.227, p = 0.01 for bacterioplankton and
R = 0.106, p = 0.02 for phytoplankton, Supporting Informa-
tion Fig. S9). The significant correlation coefficient between
bacterioplankton community similarity and geographical dis-
tance (r = �0.17, p < 0.01; Fig. 3b) confirmed the upstream–

downstream bacterioplankton community variation. The
phytoplankton community followed a similar trend but with
a slightly lower correlation coefficient (r = �0.13, p < 0.01;
Fig. 3d). The results of GAM indicated that water velocity
was a key environmental variable shaping the diversity and
structure of both bacterioplankton and phytoplankton
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communities (Supporting Information Table S1). In addition,
the importance of NO2-N and TOC was significant for phyto-
plankton community structure.

Ecological processes underlying plankton community
patterns

The VPA results showed that both local environmental and
spatial effects explained a small percentage of the variance
(3.2% and 3.8%), leaving more than 90% variance
unexplained for the whole bacterioplankton community from
2013 to 2016 (Table 1). The variance explained by local envi-
ronmental effects (40.5%) was greater than that explained by
spatial effects (14.7%) for the overall phytoplankton commu-
nity (Table 1). These results suggested the importance of neu-
tral dynamics and environmental selection structuring
bacterioplankton and phytoplankton communities, respec-
tively. By evaluating the fit to NCM, we found a higher fit for
bacterioplankton (R2 = 0.62; Fig. 4a) than for phytoplankton

(R2 = 0.25; Fig. 4b) communities. The parameter m (describing
the migration rate) was 0.195 for bacterioplankton and less
than 0.00001 for phytoplankton. Furthermore, by partitioning
the phylogenetic distance among bacterial OTUs using the
QPE, we found that most site-to-site ßNTI ranged between �2
and +2, echoing that phylogenetically conserved selection
had only a small effect in structuring bacterioplankton com-
munity (Fig. 5a). This model also indicated that assembly pro-
cesses were primarily from the dispersal limitation (41.5%)
followed by variable selection (30.2%) for all bacterioplankton
communities from 2012 to 2016 (Fig. 5b).

Successional changes of the plankton community
assembly processes

In 2012, we observed a strong distance–decay of bacter-
ioplankton community similarity without controlling for the
environmental change (jrj = 0.45, p < 0.01; Supporting Infor-
mation Fig. S10). Similar findings were observed in 2013, but

0 5 10 15

0.25

0.50

0.75

Pristine Shidou Bantou Houxi Xinglin

Stress: 0.16
R = 0.525, P < 0.01

Stress: 0.18

R = 0.542, P < 0.01

r = -0.17, P < 0.01

r = -0.13, P < 0.01

B
ra

y-
C

u
rt

is
 s

im
ila

ri
ty

B
ra

y-
C

u
rt

is
 s

im
ila

ri
ty

Geographical distance (km)

a

c

b

d

0

1

0.25

0.50

0.75

0

1

B
ac

te
ri

o
p

la
n

kt
o

n
P

hy
to

p
la

n
kt

o
n

−0.8

−0.4

0.0

0.4

−1.0 −0.5 0.0 0.5 1.0

NMDS1

N
M

D
S

2

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0 1.5
NMDS1

N
M

D
S

2

0 5 10 15
Geographical distance (km)

Fig. 3. Patterns of bacterioplankton and phytoplankton community similarity along the Houxi River, southeast China. Non-metric multidimensional scal-
ing (NMDS) graphs visualizing (a) bacterioplankton and (c) phytoplankton communities based on Bray–Curtis similarity. The global R (> 0.5) and its sig-
nificant level (p < 0.01) indicate the overall degree of sample separation across the five habitats along the river continuum over 5 yr. The distance–decay
relationships of (b) bacterioplankton and (d) phytoplankton communities indicating the variation of community similarity along the geographical
distance.

Isabwe et al. Riverine plankton in an urbanizing watershed

7



the correlation coefficient reduced upon controlling for the
environment (jrj = 0.19, p < 0.01; Supporting Information
Fig. S10). In 2013, the importance of local environmental
effects (40.0%) was greater than that of spatial effects (19.8%)
in structuring the bacterioplankton community (Table 1). The
R2 of the NCM fit for bacterioplankton was 0.58–0.67 for the
first two years (2012 and 2013) of sampling (Fig. 4c). Interest-
ingly, homogeneous selection was the main assembly process
structuring bacterioplankton community in 2012, and it was
replaced by dispersal limitation in 2013 (Fig. 5b).

For the phytoplankton community, a steeper trend of com-
munity similarity along the geographical distance was

observed in 2013 (jrj = 0.44, p < 0.01) compared with that of
the previous year (jrj = 0.27, p < 0.01; Supporting Information
Fig. S10). After controlling for the environmental factors, the
correlation coefficient between phytoplankton community
similarity and geographical distance reduced but remained sig-
nificant (jrj = 0.29, p < 0.01) in 2013. Meanwhile, the fit to
the NCM was slightly greater in 2012 (R2 = 0.22) than in 2013
(R2 = 0.16; Fig. 4c), and the variance explained by local envi-
ronmental effects (27.5%) was slightly higher than that
explained by spatial effects (24.6%) in the year 2013 (Table 1).

Compared with other timescales, 2014 had the smallest jrj
value of the distance–decay relationships for bacterioplankton

Table 1. VPA based on RDA estimating the local environment and spatial effects on bacterioplankton and phytoplankton communities,
respectively.

Variance explained (%) Forward selected variables

S E SjE S\E EjS U Spatial variables (S) Environmental variables (E)

Bacterioplankton

2013 19.8 40.0 12.0 7.8 32.2 48.0 PCNM2, PCNM1, PCNM3 WT, Chl a, TP, EC, NO3-N

2014 32.1 36.2 17.5 14.6 21.6 46.3 PCNM1, PCNM5, PCNM4, PCNM2 WT, Vel, TN

2015 — 20.8 0.4 — 31.0 79.6 ALL PCNMs WT, pH

2016 — 27.8 �0.04 5.7 33.5 76.2 ALL PCNMs WT, Turb, NO2-N, TC

All 3.2 3.8 0.9 2.4 1.4 95.4 PCNM2 DO, pH, Vel, TC, NH4-N

Phytoplankton

2013 24.6 27.5 6.5 18.1 9.5 66.0 PCNM1, PCNM2 Turb, NO3-N

2014 21.2 24.5 4.8 16.4 8.1 70.7 PCNM1, PCNM5, PCNM4, PCNM2 WT, Chl a, TN

2015 17.7 73.2 0.8 16.9 56.2 26.1 PCNM1 pH, NO2-N, TC, EC, Vel

2016 26.7 43.5 4.2 22.5 20.9 52.3 PCNM1, PCNM2, PCNM5 TN, Vel, TC, NH4-N, TP, WT

All 14.7 40.5 3.4 11.3 29.2 56.1 PCNM1, PCNM5, PCNM4, PCNM2 EC, pH, ORP, Vel, TOC, NO3-N, NO2-N

Vel: velocity, Turb: turbidity.
Two explanatory matrices were used: the spatial matrix was formed of PCNMs as a proxy for spatial effects (S) and the matrix of the environmental vari-
ables represented the local environmental effects (E). For simplicity, the explanations which were < 1% were not shown. SjE, variance explained uniquely
by spatial effects. EjS, the variance explained uniquely by local environmental effects. S\E is an intersection of the variance explained by spatial and local
environmental effects. R stands for the residual variance. “All” indicates all data for the years 2013–2016. Note that the data of the year 2012 were not
shown because some environmental variables were not available.
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community change along the distance before and after con-
trolling for the environmental factors (jrj = 0.39 and
jrj = 0.13, p < 0.01; Supporting Information Fig. S10) and the
lowest fit to the NCM (R2 = 0.45; Fig. 4c). The QPE inferred a
high dominance of the dispersal limitation (> 60%; Fig. 5b)
and VPA indicated that the relative contribution of local envi-
ronmental and spatial effects was almost equal for bacter-
ioplankton in 2014 (Table 1). The predominant effect of
deterministic processes for both bacterioplankton and phyto-
plankton was consistently revealed by the three models in the
years 2015–2016. During this period, the jrj values for distance–
decay relationships were higher than those observed in the pre-
vious years (Supporting Information Fig. S10). In 2015, the per-
centage variance explained by local environmental effects

(20.8% for bacterioplankton and 73.2% for phytoplankton) was
larger than that explained by spatial effects. In 2016, the vari-
ance explained by local environmental effects was 27.8% and
43.5% for the bacterioplankton and phytoplankton, respec-
tively (Table 1). Whereas ecological processes related to variable
selection, dispersal limitation and homogeneous selection pre-
vailed in 2015 for the bacterioplankton community, variable
selection coupled with dispersal limitation dominated in the
year 2016 (Fig. 5b).

Relationships among different models
Linear regressions between the data obtained from the

distance–decay relationships (Mantel correlation coefficients)
and the three models (Fig. 6) indicated that there was a posi-
tive relationship between the fit to NCM and the absolute
values of the Mantel correlation coefficients for bacter-
ioplankton (R2 = 0.54), but this relationship was much weaker
for phytoplankton (R2 = 0.07). After controlling for the envi-
ronmental variables, however, the relationship between the
Mantel test coefficients and the fit to the NCM reduced signifi-
cantly for bacterioplankton (R2 = 0.19), but increased for phy-
toplankton (R2 = 0.20; Fig. 6). The fit to the NCM was
negatively correlated with the percentage variance explained
by both local environment (R2 = 0.16) and spatial effects
(R2 = 0.11) for phytoplankton and bacterioplankton, respec-
tively, and it was positively related to the residual variance
(R2 = 0.15) for phytoplankton. In addition, the percentage
contribution of dispersal limitation, inferred within the QPE,
was negatively correlated with the fit to the NCM for bacter-
ioplankton community (R2 = 0.35), and the percentage contri-
bution of the undominated fraction was positively correlated
with the fit to the NCM (R2 = 0.43). The fit to the NCM did
not show strong correlation with the percentage contribution
of homogeneous selection, variable selection and homogeniz-
ing dispersal (Fig. 6).

Discussion
Evaluating the distribution patterns and the relative contri-

bution of deterministic and stochastic processes in structuring
plankton communities over spatial and temporal scales is cru-
cial for understanding how these communities respond to
local, regional, and global changes (Hanson et al. 2012). Our
system can be thought of as a natural experiment, where the
treatments are the different levels of urbanization along the
course of the river. The results indicated that plankton com-
munity similarity decreased with increasing geographical dis-
tance from the upstream pristine to downstream urban sites of
Houxi River, southeast China. Ordination and clustering
methods revealed distinct plankton community changes that
roughly corresponded to the urbanization-induced environ-
mental heterogeneity along the river continuum (Fig. 2), and
complementary models evaluating processes underlying the
observed patterns showed that, although it was small, the
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variance explained by local environmental variables was
greater than that explained by spatial variables for the whole
plankton community and for communities in each year of
sampling (Table 1). The NCM results indicated that stochastic
processes were more important in structuring bacter-
ioplankton than phytoplankton communities (Fig. 4). This
result was further confirmed by the QPE for bacterioplankton
(Fig. 5), a model that showed an overall dominance of dis-
persal limitation, which increased with a decreasing fit to the
NCM (R2 = 0.35) over the 5 yr of the study (Fig. 6).

Urbanization amplified environmental heterogeneity
along the river continuum

Nutrients were significantly higher in the downstream
urban sites than the upstream pristine site indicating human
signatures through increasing abiotic inputs downstream
(Yang et al. 2022). Previously, we showed that a similar preva-
lence of different processes generating the core and random
subset of plankton communities was a result of concordant
responses to environmental change in the Houxi River
(Isabwe et al. 2019). In addition, Yu et al. (2014) revealed
urbanization effects on metal loadings and Peng et al. (2020)
demonstrated increasing richness and abundance of antibiotic

resistant genes from rural to urban sections of Houxi River
watershed. The upstream presence of drinking water reservoirs
(Shidou and Bantou) for downstream urban population also
highlighted human-induced hydrological change (Yang
et al. 2017). Taken alone, the results of this study confirm that
human activities including construction of drinking water res-
ervoirs and nutrient enrichment downstream could amplify
upstream–downstream environmental heterogeneity in urban-
izing watersheds (Bai et al. 2017; Pickett et al. 2017).

Plankton community varied with longitudinal
environmental heterogeneity

The predicted (based on landscape and hydrological
changes) and observed environmental heterogeneity cor-
responded to a decrease in plankton community similarity
with increasing geographical distance from the upstream pris-
tine towards the downstream urban areas. These observations
partially corroborated a previous conclusion that local envi-
ronmental drivers from discharge events, associated with
urbanization, shaped bacterial community structure in an
urban stream (Tinkers Creek, Cuyahoga River watershed,
Ohio, USA; Roberto et al. 2018). Some previous studies have
also demonstrated that hydrological change could greatly
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influence the distribution patterns of plankton assemblages
(Yang et al. 2017; Graco-Roza et al. 2020). In another subtropi-
cal river (Jiulong River, Fujian, China), we found that a stron-
ger influence of local environmental than spatial effects was
intensified during the dry season under low water-flow condi-
tions (Isabwe et al. 2018). Moreover, both bacterioplankton
and phytoplankton communities differed more across habitat
types in the watershed than by seasonality. From this, we
inferred that the well-known seasonal patterns of plankton in
freshwater ecosystems (Sommer et al. 2012; Diao et al. 2017;
Nyirabuhoro et al. 2020) were overwhelmed by site-to-site lon-
gitudinal disparity as previously shown by Ren et al. (2018) for
the amoeba community. Concomitantly, Griffin et al. (2017)
showed that microbial dispersal was successful within but not
between different habitats in an agriculture-dominated water-
shed. However, this result runs counter to Hanashiro et al.
(2019) who found that bacterioplankton communities
inhabiting shallow urban ponds in Belgium were less affected
by environmental conditions resulting from urbanization
although six local environmental variables significantly
explained variation in bacterioplankton community composi-
tion. These contrasting findings warrant further studies, because
not only environmental heterogeneity and connectivity but
also microbial adaptation, their dispersal rates and metabolic
versatility could influence the relative importance of different
assembly processes (Langenheder and Lindström 2019).

The interplay between deterministic and stochastic
processes shaped plankton distribution patterns

Observational studies investigating questions of commu-
nity assembly can be hard to fully interpret. Whereas experi-
mental studies are typically more informative about
mechanisms, they are difficult to carry out at anything but
very small scales (Goldford et al. 2018). Indeed, variation in
biotic and abiotic characteristics is often greater and more
complex in natural than in most experimental systems. In this
study, pronounced urbanization-induced environmental varia-
tion can be considered a “natural experiment”—if determinis-
tic processes or differences in niche preferences dominate,
repeatable and predictable species turnover should be
observed. In contrast, more or less repeatable high species
turnover should prevail if stochastic processes were mainly at
play. The interplay between deterministic and stochastic pro-
cesses observed in this study indicated that directional dis-
persal via water flow could not override local selective
pressures and biotic interactions, thereby confirming that eco-
logical selection increases compositional differences whereas
high dispersal minimizes this effect (Hanson et al. 2012).
However, directional dispersal was constrained by lentic habi-
tats in the two drinking water reservoirs in the upstream of
the Houxi River. Physical properties such as the size and vol-
ume of the reservoir may determine whether a unique micro-
bial community emerges at the lentic sites due to prolonged
or short hydraulic retention times (Niño-García et al. 2016). In

turn, the emerging taxa may exert significant impact on the
downstream microbial communities upon the reservoir open-
ing as previously observed in the Ebro River and the Yangtze
River (Ruiz-Gonz�alez et al. 2013; Gao et al. 2021). Although
the hydraulic retention times of these reservoirs were rela-
tively long throughout the year (Yang et al. 2017), we found
that the reservoir lentic habitats were characterized by an
increase in phytoplankton diversity and a decrease in bacterial
diversity compared with the lotic habitats suggesting that hab-
itats with strongest selection shift depending on the hydrolog-
ical conditions (Stadler and del Giorgio 2021). Recently, Chen
et al. (2021) found that longitudinal patterns of microbial
community in the Lancang River with cascade dams were not
significantly different with those in the parallel Nujiang River
without any dam. This result highlights the potential for
downstream community coalescence (Mansour et al. 2018)
which should be further explored prior to respond to a major
question of whether building a series of small reservoirs
instead of a single large one is ecologically and environmen-
tally preferable (Maavara et al. 2020). Interestingly, our GAM
results indicated that water velocity was a key driver of the dif-
ferences in plankton alpha and beta diversities along the
Houxi River (Supporting Information Table S1). Several studies
have shown that the dynamics of plankton communities were
related to flow velocity and water discharge (Wu et al. 2018a,
b; Qu et al. 2019; Chen et al. 2021; Stadler and del
Giorgio 2021). Flow velocity can potentially influence riverine
plankton assemblages by altering nutrient inputs and
enhancement of dilution effect (Yang et al. 2017). Other fac-
tors that control the growth of phytoplankton include light
availability. Light penetration limited phytoplankton in
downstream waters as transparency therein was much lower
than in the upstream reservoirs (Yang et al. 2022). The multi-
dimensionality of plankton responses to environmental
drivers is well known, and even an environmental driver with
small relative influence might impose its strong influence via
its indirect effects on other drivers (Kakouei et al. 2022).

Phytoplankton were predominantly shaped by
deterministic processes while bacterioplankton were
mainly governed by stochastic processes

Responding to a call for the assessment of the relative
importance of assembly processes for different types of micro-
organisms (Martiny et al. 2006), Soininen et al. (2007) found
that spatial effects were more important than local environ-
mental factors in shaping zooplankton than phytoplankton
distribution in boreal wetland ponds. In this study, phyto-
plankton community was determined by deterministic rather
than stochastic processes. These results align with those of Liu
et al. (2015) who reported that phytoplankton communities
exhibited a stronger response to environmental changes than
bacterioplankton in three subtropical reservoirs, but contrast
sharply with Logares et al. (2018) who found a more pro-
nounced influence of salinity-induced selection in bacterial
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communities than microeukaryotes in Eastern Antarctica. Pre-
viously, Astorga et al. (2012) questioned if the distance–decay
of community similarity is caused by spatially limited dispersal
or by niche-related factors and concluded that it is not simply a
function of organism size but other traits such as dispersal capac-
ity. Compared with bacterioplankton, phytoplankton communi-
ties exhibit a wide array of responses to environmental
heterogeneity (Liu et al. 2015). This has brought about a need to
evaluate the relative role of the assembly processes between
bacterioplankton and phytoplankton (or microeukaryotes).
Indeed, different plankton communities have different dispersal
potential and metabolic activities. While microeukaryotic com-
munities are metabolically versatile, bacterioplankton are meta-
bolically less flexible (Logares et al. 2018). Thus, the major role of
stochastic processes in structuring the bacterioplankton commu-
nity in this study might be related to the size-related trait plastic-
ity, a hypothesis which assumes that smaller organisms are less
environment-filtered than larger organisms (Farjalla et al. 2012;
Wu et al. 2018a,b). Nevertheless, this hypothesis could be further
tested through experimental studies, because observational stud-
ies might be limited by other factors such as the scale-
dependency and sampling resolution.

The QPE model inferred dispersal limitation for
bacterioplankton at a small spatial scale

Empirical studies addressing the scale dependency of eco-
logical processes have shown that large spatial scale encom-
passes greater diversities of habitat types, allowing for a
greater diversity of organisms to coexist through ecological
selection (Martiny et al. 2006; Kent et al. 2007; Hanson
et al. 2012). Large spatial scales can also impart synchronous
behavior among microbial populations, leading to a more pro-
nounced influence of deterministic assembly (Hanson
et al. 2012). In contrast, stochastic assembly of the plankton
community could dominate at small spatial scales with a large
species pool, high productivity, low disturbance, and low pre-
dation (Zhou and Ning 2017). In riverine ecosystems, how-
ever, downstream dispersal is not significantly restricted
(Chen et al. 2019). Patterns of compositional turnover may be
different to those observed in communities inhabiting lentic
and terrestrial habitats. For instance, a recent study at the large
spatial scale of the Yangtze River showed that bacterial com-
munity composition clustered according to the local land-
forms, and the stochastic process of turbulent flow generated
homogeneous habitats for bacterioplankton (Liu et al. 2018).
Despite this, dispersal limitation was the dominant process of
microbial community assembly in other rivers such as the
Jinsha River (Chen et al. 2020a) and the Yangtze River (Chen
et al. 2020b). In our study, the distance–decay of plankton
community similarity along the geographical distance in the
Houxi River was highest when there was a lesser effect of the
local environment indicating that these plankton communi-
ties could be either locally adapted or dispersal limited
(Hanson et al. 2012). In their early review, Hanson et al.

(2012) argued that microorganisms can show dispersal limita-
tion either if their movement to a new location is restricted,
or if the establishment of individuals in a new location is hin-
dered. Since the water flow is unidirectional and plankton are
unlikely to be returned via a random process, the second sce-
nario might have taken place in the Houxi River. This is
supported by the fact that a large percentage of taxa shared
across the sites at all time-points were observed in the commu-
nity potentially dominated by stochastic but not deterministic
processes (i.e., bacterioplankton). This process is often referred to
as the ‘drift paradox’ in studies of macroorganisms in rivers
(Humphries and Ruxton 2001; Hänfling and Weetman 2006).
Considering the loss of river connectivity due to downstream
fragmentation and flow regulation globally, the aforementioned
second scenario may be happening in other rivers draining
urbanizing watersheds and deserves further considerations.

Stronger fit to the NCM corresponded with less dispersal lim-
itation for bacterioplankton in this study and the relationship
between the NCM and the relative importance of local environ-
ment and spatial effects revealed concordant insights. This indi-
cated that even though year-to-year environmental variation
and intrusion by invading species may exert spurious correla-
tions when disentangling the effects of selection in VPA models
(Clappe et al. 2018), observations through multiple comple-
mentary models could help microbial ecologists to accurately
and precisely depict the main community assembly processes
in future studies. We observed a positive relationship between
the NCM fit and Mantel test coefficients indicating that longi-
tudinal distribution patterns of bacterioplankton, through
distance–decay could be related to random immigration, birth,
and death (Sloan et al. 2006). However, the magnitude of this
correlation was reduced after controlling for environmental fac-
tors, inferring that environmental effect contributes partially to
a decreasing community similarity. In contrast, there was a
weak relationship between NCM fit and Mantel test that
increased after controlling for environmental variables for phy-
toplankton. Finally, the good positive relationship between the
fit to the NCM and the “undominated” fraction inferred with
the QPE indicated the major role of the ecological drift in shap-
ing bacterioplankton communities (Stegen et al. 2013).

Conclusion
In this study, we integrated three models (i.e., VPA, NCM,

and the QPE) to distinguish community assembly resulting
from environmental heterogeneity and neutral (stochastic)
dynamics for riverine plankton in an urbanizing watershed.
The results showed that urbanization with the construction of
drinking water reservoirs and nutrient inputs being the pri-
mary drivers of environmental heterogeneity along river, cau-
sed the establishment of distinct but longitudinally connected
habitats for the riverine plankton communities. The observed
plankton distribution patterns were driven by an interplay
between deterministic and stochastic processes, however the
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phytoplankton community appeared to be more influenced
by the environmental heterogeneity than the bacter-
ioplankton community. These results imply that understand-
ing riverine plankton response to urbanization-induced
environmental changes is essential because ecological and
evolutionary processes are shaped by both the water move-
ment and the environment. Since microbial plankton
responses to ecological disturbances vary markedly across the
planet, future studies comparing patterns and processes in riv-
ers draining urbanizing watersheds and those in purely natu-
ral settings will improve our understanding of the riverine
microbial community assembly in a changing world.

Data availability statement
Bacterioplankton sequence data were uploaded to NCBI

under the project number PRJNA383082 and SRA number
SRP104354. Phytoplankton data are available from the
corresponding author upon request.
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