Supplemented information

Mobile incubator for iron(III) reduction in the gut of soil-feeding earthworm *Pheretima guillelmi* and interaction with denitrification

Guo-Wei Zhou,^{†,‡} Xiao-Ru Yang,^{*,†} An-Qi Sun,[§] Hu Li,[†] Simon Bo Lassen,^{†, "} Bang-Xiao Zheng,^{\perp} and Yong-Guan Zhu^{†,‡}

[†]Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China

[‡]State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China

[§]Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China

["]Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark

¹Falculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti 15140, Finland

* Corresponding Author

Phone: (+86) 592 6190997; Fax: (+86) 592 6190977; E-mail: xryang@iue.ac.cn Number of figures: 7.

Number of tables: 3.

Number of pages: 17.

1 Supporting Methods

2 Quantitative PCR

Determination of the abundances of genes (including the bacterial 16S rRNA, nar G, 3 nirK, nirS and nosZ) was performed with a real-time PCR Detection System (Roche 4 480, Roche, Indianapolis, IN, USA). Primers of these genes and thermal cycling 5 condition were listed in the Table S4. The reaction mixture contained 2 µL DNA (as 6 template), 0.8 µL of each primer, 10 µL of SYBR 2 Premix EX Taq, 0.6 µL BSA (20 7 mg ml⁻¹) and 5.8 μ L of dd H₂O. Standard plasmids carrying these genes were 8 9 prepared by cloning these genes from samples. A standard curve was carried out 10 using 10-fold serial dilutions of standard plasmids DNA. The melting curve displayed only one peak at a melting temperature (T_m). Only the Reaction of PCR 11 with efficiencies between 90% and 110% were accepted. 12

13 Gut content microcosm in the second generation

14 To further investigate the order of nitrate reduction and iron(III) reduction occurred 15 in the gut content. The IG gut incubations were transferred (10%, v/v) to fresh anoxic iron(III) reduction medium (assigned as generation II) after the ferrihydrite in 16 17the treatment of IG gut was completely reduced. The anoxic iron(III) reduction 18 medium was prepared as described in the text. Generation II was divided into two 19 phases, namely phase I and phase II. The stage without exogenous organic carbon was divided as phase I, and the phase II began when acetate was added to the 20 21 medium after the iron(III) reduction ceased. Two treatments were set up during the 22 second generation incubation: (1) abiotic treatment inoculated with sterile deionized water (CK); (2) biotic treatment inoculated with IG gut incubation (IIG gut). 23

24 Supporting Results

Turnover of acetate, nitrate, Fe(II) and total iron in the microcosm experiment incubated with IIG gut

During microcosmic experiment of generation II, nitrate reduction happened earlier 27 28 than iron(III) reduction during the incubation, and no iron(III) reduction was 29 observed until the addition of acetate during the phase II of IIG gut (Figure 6). The remaining acetate contained in the medium was completely consumed with a rate of 30 0.068 mmol L⁻¹ day¹ during the phase I in the treatment of IIG gut, and the 8 mmol 31 L⁻¹ acetate added at the beginning of phase II was used up within 16 days (Figure 32 S6b). NO₃⁻ reduction, with a rate of 0.46 mmol L^{-1} day¹, stopped after 6 days of 33 incubation and then continued after the addition of acetate in the treatment of IIG gut 34 (Figure S6b). NO₂⁻ accumulation was substantially higher at the beginning of phase 35 II $(1.18 \pm 0.14 \text{ mmol } \text{L}^{-1})$ than that of phase I $(0.30 \pm 0.12 \text{ mmol } \text{L}^{-1})$ and then 36 37 decreased promptly in the treatment of IIG gut (Figure S6c). After nitrate exhausted in the system, rate of iron(III) reduction increased sharply and all ferrihydrite was 38 39 consumed up with 24 days during the phase II in the treatment of IIG gut (Figure S6a). Total extractable iron in the treatment of IIG gut remained constant at around 40 27 mmol L^{-1} throughout the incubation (Figure S6a). 41

42 **Figure S1.** Development of NO_2^- in treatments of IG gut and IG soil during the 43 microcosmic incubation. The error bars indicate the standard deviations of three 44 replications.

Figure S2. Gene copy numbers of 16S *rRNA* (a), *narG* (b), *nirK* (c), *nirS* (d) and *nosZ* (e) in setups of *in situ* soil, in vivo gut, IG soil (phase II) and IG gut (phase I).
The error bars indicate the standard deviations of three replications.

49

Figure S3. Heatmap of log relative abundance of the taxa at the family level in setups of *in situ* soil, in vivo gut, IG soil (phase II) and IG gut (phase I). Each treatment contained three lanes, which represented three replicates. The color intensity of the heatmap in each cell denotes the average relative abundance (calculated from the three replications) of a genus in a treatment with the legend shown at the top of the figure.

Figure S4. Emission of CH₄ (a), N_2O (b) and N_2 (c) in the in vivo gut of earthworm *P. guillelmi* and in situ soil during 5-hour incubation. The detection was based on the fresh weight of in vivo earthworm and in situ soil. The error bars indicate the standard deviations of three replications.

Figure S5. RDA (redundancy analysis) of the bacterial communities at phylum level (top 24) from all the setups of *in situ* soil, in vivo gut, IG soil (phase II) and IG gut (phase I). The concentrations of Fe(III) (p < 0.001) and nitrate (p = 0.002) were tested to significantly influence the bacterial community patterns of all setups.

Figure S6. Development of Fe(II) (a), total iron (a), NO_3^- (b), acetate (b) and NO_2^- (c) concentrations in treatment of IIG gut during the microcosmic incubation. The error bars indicate the standard deviations of three replications.

Figure S7. Development of lactate and propionate in treatments of IG gut and IG soil during the microcosmic incubation. The error bars indicate the standard deviations of three replications.

Sampla	Average number of sequences	Average number of	
Sample		OTUs	
in situ soil	165548	7091	
in vivo gut	126118	9242	
IG soil (phase II)	136512	7983	
IG gut (phase I)	133834	3500	

Table S1. The average numbers of OTUs and sequences for each sample of all
treatments.

the setup of <i>in situ</i> soil, in vivo gut, IG soil (phase II) and IG gut (phase I).						
ID	Family					
A10	0 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Burkholderiales; f_Oxalobacteraceae					
A10	1 k_Bacteria; p_Planctomycetes; c_Planctomycetia; o_Gemmatales; f_Isosphaeraceae					
A10	2 k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Bacillaceae					
A10	3 k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Enterobacteriales; f_Enterobacteriaceae					
A10	4 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Microbacteriaceae					
A10	5 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhizobiales; f_Xanthobacteraceae					
A10	6 k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Paenibacillaceae					
A10	7 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Burkholderiales; f_Comamonadaceae					
A10	8 k_Bacteria; p_Bacteroidetes; c_Cytophagia; o_Cytophagales; f_Cytophagaceae					
A10	9 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhizobiales; f_Rhizobiaceae					
A110	0 Unassigned; Other; Other; Other					
A11	k_Archaea; p_Crenarchaeota; c_Thaumarchaeota; o_Nitrososphaerales; f_Nitrososphaeraceae					
A112	2 k_Bacteria; p_Bacteroidetes; c_Flavobacteriia; o_Flavobacteriales; f_[Weeksellaceae]					
A11.	k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Burkholderiales; f_Burkholderiaceae					
A114	4 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhizobiales; f_Methylobacteriaceae					
A11:	5 k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_Pseudomonadaceae					
A11	6 k_Bacteria; p_Bacteroidetes; c_Sphingobacteriia; o_Sphingobacteriales; f_Sphingobacteriaceae					
A11′	7 k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_Moraxellaceae					
A113	8 k_Bacteria; p_Planctomycetes; c_Planctomycetia; o_Gemmatales; f_Gemmataceae					
A119	9 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Methylophilales; f_Methylophilaceae					
A12	0 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Caulobacterales; f_Caulobacteraceae					
A12	1 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhizobiales; f_					
A12	2 k_Bacteria; p_Planctomycetes; c_Planctomycetia; o_Pirellulales; f_Pirellulaceae					
A12	3 k_Bacteria; p_Bacteroidetes; c_Flavobacteriia; o_Flavobacteriales; f_Flavobacteriaceae					
A12	4 k Bacteria: p Proteobacteria: c Alphaproteobacteria: o Sphingomonadales: f Sphingomonadaceae					

- A125 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Burkholderiales; f_Alcaligenaceae
- A126 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhizobiales; f_Hyphomicrobiaceae
- A128 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhizobiales; f_Bradyrhizobiaceae
- A130 k_Bacteria; p_Planctomycetes; c_Planctomycetia; o_Planctomycetales; f_Planctomycetaceae
- A131 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhodospirillales; f_Rhodospirillaceae
- A132 k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Legionellales; f_Legionellaceae
- A133 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhizobiales; Other
- A137 k_Bacteria; p_Chloroflexi; c_Anaerolineae; o_envOPS12; f_
- A138 k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Planococcaceae
- A139 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Clostridiaceae
- A140 k_Bacteria; p_Acidobacteria; c_DA052; o_Ellin6513; f_
- A142 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Micrococcaceae
- A143 k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Aeromonadales; f_Aeromonadaceae
- A145 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Streptomycetaceae
- Al46 k_Bacteria; p_Actinobacteria; c_Thermoleophilia; o_Gaiellales; f_Gaiellaceae
- k_Bacteria; p_Proteobacteria; c_Deltaproteobacteria; o_Syntrophobacterales; A147
- f_Syntrophobacteraceae
- A151 k Bacteria; p Proteobacteria; c Gammaproteobacteria; o Xanthomonadales; f Sinobacteraceae
- A152 k_Bacteria; p_Acidobacteria; c_Solibacteres; o_Solibacterales; f_Solibacteraceae
- A153 k_Bacteria; p_Bacteroidetes; c_[Saprospirae]; o_[Saprospirales]; f_Chitinophagaceae
- A157 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Peptococcaceae
- A158 k_Bacteria; p_Proteobacteria; c_Deltaproteobacteria; o_Myxococcales; f_
- A162 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_[Tissierellaceae]
- A164 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhodospirillales; f_Acetobacteraceae
- A166 k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Thermoactinomycetaceae
- A168 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Nocardioidaceae
- A169 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae
- A170 k_Bacteria; p_Acidobacteria; c_Acidobacteria-6; o_iii1-15; f_
- A171 k_Bacteria; p_Nitrospirae; c_Nitrospira; o_Nitrospirales; f_0319-6A21

- A173 k_Bacteria; p_Acidobacteria; c_Solibacteres; o_Solibacterales; f_
- A177 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_
- A179 k_Bacteria; p_Acidobacteria; c_Acidobacteriia; o_Acidobacteriales; f_Acidobacteriaceae
- A184 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Intrasporangiaceae
- A186 k_Bacteria; p_Chloroflexi; c_Ellin6529; o_; f_
- A189 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Syntrophomonadaceae
- A190 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Rhodocyclales; f_Rhodocyclaceae
- A192 k_Bacteria; p_Nitrospirae; c_Nitrospira; o_Nitrospirales; f_Nitrospiraceae
- A193 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Micromonosporaceae
- A197 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Nocardiaceae
- A199 k_Bacteria; p_Actinobacteria; c_Thermoleophilia; o_Solirubrobacterales; f_
- A202 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Ellin6067; f_
- A205 k_Bacteria; p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Mycobacteriaceae
- A206 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_MND1; f_
- A208 k_Bacteria; p_Chloroflexi; c_Thermomicrobia; o_JG30-KF-CM45; f_
- A212 k Bacteria; p Firmicutes; c Clostridia; o Clostridiales; f Peptostreptococcaceae
- A215 k_Bacteria; p_Acidobacteria; c_Acidobacteriia; o_Acidobacteriales; f_Koribacteraceae
- A221 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_
- A231 k_Bacteria; p_Actinobacteria; c_MB-A2-108; o_0319-7L14; f_
- A233 k_Bacteria; p_Tenericutes; c_Mollicutes; o_; f_
- A234 k_Bacteria; p_Actinobacteria; c_Thermoleophilia; o_Gaiellales; f_
- A236 k_Bacteria; p_Proteobacteria; c_Alphaproteobacteria; o_Rhodobacterales; f_Rhodobacteraceae
- A237 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Dehalobacteriaceae
- A240 k_Bacteria; p_Firmicutes; c_Bacilli; o_Bacillales; f_Alicyclobacillaceae
- A241 k_Bacteria; p_Gemmatimonadetes; c_Gemm-1; o_; f_
- A247 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachnospiraceae
- A248 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_; f_
- A250 k_Bacteria; p_Acidobacteria; c_[Chloracidobacteria]; o_RB41; f_
- A251 k_Bacteria; p_Actinobacteria; c_Acidimicrobiia; o_Acidimicrobiales; f_

- A258 k Bacteria; p Firmicutes; c Clostridia; o Clostridiales; f Christensenellaceae
- A259 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_[Mogibacteriaceae]
- A260 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Caldicoprobacteraceae
- A262 k_Bacteria; p_Firmicutes; c_Clostridia; o_OPB54; f_
- A275 k_Bacteria; p_WS3; c_PRR-12; o_Sediment-1; f_PRR-10
- A282 k_Bacteria; p_Tenericutes; c_Mollicutes; o_RF39; f_
- A285 k_Bacteria; p_Acidobacteria; c_Acidobacteria-6; o_iii1-15; f_RB40
- A289 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Neisseriales; f_Neisseriaceae
- A290 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Gracilibacteraceae
- A299 k_Bacteria; p_Proteobacteria; c_Deltaproteobacteria; o_Desulfuromonadales; Other
- A301 k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Thiotrichales; f_Piscirickettsiaceae
- A302 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_SC-I-84; f_
- A308 k_Bacteria; p_Proteobacteria; c_Deltaproteobacteria; o_Desulfuromonadales; f_Geobacteraceae
- A310 k_Bacteria; p_Planctomycetes; c_Phycisphaerae; o_WD2101; f_
- A313 k_Bacteria; p_Actinobacteria; c_Acidimicrobiia; o_Acidimicrobiales; f_C111
- A314 k_Bacteria; p_Firmicutes; c_Clostridia; o_; f_
- A315 k_Bacteria; p_Tenericutes; c_RF3; o_ML615J-28; f_
- A323 k_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Legionellales; f_Coxiellaceae
- A324 k_Bacteria; p_Firmicutes; c_Clostridia; o_Thermoanaerobacterales; f_
- A326 k_Bacteria; p_Actinobacteria; c_Thermoleophilia; o_Solirubrobacterales; f_Solirubrobacteraceae
- A331 k_Bacteria; p_Proteobacteria; c_Betaproteobacteria; o_Nitrosomonadales; f_Nitrosomonadaceae
- A338 k_Bacteria; p_Verrucomicrobia; c_Opitutae; o_Opitutales; f_Opitutaceae
- A346 k_Bacteria; p_Actinobacteria; c_Acidimicrobiia; o_Acidimicrobiales; f_EB1017
- A353 k_Bacteria; p_Acidobacteria; c_Acidobacteria-6; o_iii1-15; f_mb2424
- A356 k_Bacteria; p_Acidobacteria; c_Holophagae; o_Holophagales; f_Holophagaceae
- A357 k_Bacteria; p_Bacteroidetes; c_Flavobacteriia; o_Flavobacteriales; f_Cryomorphaceae
- A360 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; Other
- A363 k_Bacteria; p_Bacteroidetes; c_Sphingobacteriia; o_Sphingobacteriales; f_
- A376 k Bacteria; p Firmicutes; c Clostridia; o Clostridiales; f Symbiobacteriaceae

- A377 k_Bacteria; p_Proteobacteria; c_Deltaproteobacteria; o_Desulfovibrionales; f_Desulfovibrionaceae
- A378 k_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_EtOH8
- A381 k_Bacteria; p_Firmicutes; c_Clostridia; o_MBA08; f_
- A383 k_Bacteria; p_Firmicutes; c_OPB54; o_; f_
- A397 k_Bacteria; p_Chloroflexi; c_Anaerolineae; o_Caldilineales; f_Caldilineaceae
- A399 k_Bacteria; p_Cyanobacteria; c_ML635J-21; o_; f_
- A416 k_Bacteria; p_Proteobacteria; c_Deltaproteobacteria; o_Bdellovibrionales; f_Bacteriovoracaceae
- A440 k_Bacteria; p_Bacteroidetes; c_[Saprospirae]; o_[Saprospirales]; f_Saprospiraceae
- A492 k_Bacteria; p_Verrucomicrobia; c_Opitutae; o_; f_

Genes	Primers		Thermal cycling conditions	References
16S rRNA	515F 907R	GTGCCAGCMGCCGCGG CCGTCAATTCMTTTRAGTTT	95 °C 5 min 95 °C 30 s 58 °C 30 s 72 °C 30 s 72 °C 10 min $4 °C \infty$	1
narG	1960F 2650R	TAYGTSGGSCARGARAA TTYTCRTACCABGTAGC	95 °C 5 min 95 °C 30 s 55 °C 40 s 72 °C 40 s 72 °C 10 min 4 °C ∞	2
nirK	nirK1F nirK5R	GGMATGGTKCCSTGGCA AACTTGCCGTVGYCCAGAC	95 °C 5 min 95 °C 30 s 57 °C 40 s 72 °C 40 s 72 °C 10 min 4 °C ∞	3,4
nirS	nirScd3Af nirSR3cd	TAYCACCCSGARCCGCGCGT AGKCGTTGACTTKCCGGTCG	95 °C 5 min 95 °C 5 s 54 °C 40 s 72 °C 35 s 72 °C 10 min $4 °C \infty$ 30 cycles	3,4
nosZ	nosZF nosZR	CCCGCTGCACACCRCCTTCGA CGTCGCCSGAGATGTCGATCA	95 °C 5 min 95 °C 15 s 60 °C 15 s 72 °C 30 s 72 °C 10 min $4 °C \infty$ 30 cycles	3,4

Table S3. Primers of denitrification genes and thermal cycling conditions.

80 **References**

- 81 (1) Zhou, G. W.; Yang, X. R.; Li, H.; Marshall, C. W.; Zheng, B. X.; Yan, Y.; Su, J. Q.; Zhu, Y. G.
- Electron shuttles enhance anaerobic ammonium o xidation coupled to iron(III) reduction. *Environ. Sci. Technol.* 2016, *50* (17), 9298-9307. DOI: 10.1021/acs.est.6b02077.
- 84 (2) Laurent, P.; Séverine, P.; Fabrice, M. L.; Stéphanie, H.; Jean Claude, G. Molecular analysis of the
- nitrate-reducing community from unplanted and maize-planted soils. Appl. Environ. Microbiol. 2002,
- 86 68 (12), 6121-6128. DOI: 10.1128/AEM.68.12.6121-6128.2002.
- 87 (3) Zhou, G. W.; Yang, X. R.; Marshall, C. W.; Li, H.; Zheng, B. X.; Yan, Y.; Su, J. Q.; Zhu, Y. G.
- 88 Biochar addition increases the rates of dissimilatory iron reduction and methanogenesis in ferrihydrite
- 89 enrichments. *Front. Microbiol.* **2017**, *8*, 589. 10.3389/fmicb.2017.00589.
- 90 (4) Ligi, T.; Truu, M.; Truu, J.; Nõlvak, H.; Kaasik, A.; Mitsch, W. J.; Mander, Ü. Effects of soil
- 91 chemical characteristics and water regime on denitrification genes (*nirS*, *nirK*, and *nosZ*) abundances
- 92 in a created riverine wetland complex. *Ecol. Eng.* 2014, 72, 47-55. DOI:
 93 10.1016/j.ecoleng.2013.07.015.

94